Goto

Collaborating Authors

 Lin, Quan


Do Not Wait: Learning Re-Ranking Model Without User Feedback At Serving Time in E-Commerce

arXiv.org Artificial Intelligence

Recommender systems have been widely used in e-commerce, and re-ranking models are playing an increasingly significant role in the domain, which leverages the inter-item influence and determines the final recommendation lists. Online learning methods keep updating a deployed model with the latest available samples to capture the shifting of the underlying data distribution in e-commerce. However, they depend on the availability of real user feedback, which may be delayed by hours or even days, such as item purchases, leading to a lag in model enhancement. In this paper, we propose a novel extension of online learning methods for re-ranking modeling, which we term LAST, an acronym for Learning At Serving Time. It circumvents the requirement of user feedback by using a surrogate model to provide the instructional signal needed to steer model improvement. Upon receiving an online request, LAST finds and applies a model modification on the fly before generating a recommendation result for the request. The modification is request-specific and transient. It means the modification is tailored to and only to the current request to capture the specific context of the request. After a request, the modification is discarded, which helps to prevent error propagation and stabilizes the online learning procedure since the predictions of the surrogate model may be inaccurate. Most importantly, as a complement to feedback-based online learning methods, LAST can be seamlessly integrated into existing online learning systems to create a more adaptive and responsive recommendation experience. Comprehensive experiments, both offline and online, affirm that LAST outperforms state-of-the-art re-ranking models.


Conversion Rate Prediction via Post-Click Behaviour Modeling

arXiv.org Machine Learning

Effective and efficient recommendation is crucial for modern e-commerce platforms. It consists of two indispensable components named Click-Through Rate (CTR) prediction and Conversion Rate (CVR) prediction, where the latter is an essential factor contributing to the final purchasing volume. Existing methods specifically predict CVR using the clicked and purchased samples, which has limited performance affected by the well-known sample selection bias and data sparsity issues. To address these issues, we propose a novel deep CVR prediction method by considering the post-click behaviors. After grouping deterministic actions together, we construct a novel sequential path, which elaborately depicts the post-click behaviors of users. Based on the path, we define the CVR and several related probabilities including CTR, etc., and devise a deep neural network with multiple targets involved accordingly. It takes advantage of the abundant samples with deterministic labels derived from the post-click actions, leading to a significant improvement of CVR prediction. Extensive experiments on both offline and online settings demonstrate its superiority over representative state-of-the-art methods.


Multi-Level Deep Cascade Trees for Conversion Rate Prediction

arXiv.org Machine Learning

Developing effective and efficient recommendation methods is very challenging for modern e-commerce platforms (e.g. Taobao). Generally speaking, two essential modules named "Click-Through Rate Prediction" (CTR) and "Conversion Rate Prediction" (CVR) are included, where CVR module is a crucial factor that affects the final purchasing volume directly. However, it is indeed very challenging due to its sparseness nature. In this paper, we tackle this problem by proposing multi-Level Deep Cascade Trees (ldcTree), which is a novel decision tree ensemble approach. It leverages deep cascade structures by stacking Gradient Boosting Decision Trees (GBDT) to effectively learn feature representation. In addition, we propose to utilize the cross-entropy in each tree of the preceding GBDT as the input feature representation for next level GBDT, which has a clear explanation, i.e., a traversal from root to leaf nodes in the next level GBDT corresponds to the combination of certain traversals in the preceding GBDT. The deep cascade structure and the combination rule enable the proposed ldcTree to have a stronger distributed feature representation ability. Moreover, inspired by ensemble learning, we propose an Ensemble ldcTree (E-ldcTree) to encourage the model's diversity and enhance the representation ability further. Finally, we propose an improved Feature learning method based on EldcTree (F-EldcTree) for taking adequate use of weak and strong correlation features identified by pre-trained GBDT models. Experimental results on off-line dataset and online deployment demonstrate the effectiveness of the proposed methods.