Goto

Collaborating Authors

 Lin, Qin


Disturbance Observer-based Control Barrier Functions with Residual Model Learning for Safe Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) agents need to explore their environment to learn optimal behaviors and achieve maximum rewards. However, exploration can be risky when training RL directly on real systems, while simulation-based training introduces the tricky issue of the sim-to-real gap. Recent approaches have leveraged safety filters, such as control barrier functions (CBFs), to penalize unsafe actions during RL training. However, the strong safety guarantees of CBFs rely on a precise dynamic model. In practice, uncertainties always exist, including internal disturbances from the errors of dynamics and external disturbances such as wind. In this work, we propose a new safe RL framework based on disturbance rejection-guarded learning, which allows for an almost model-free RL with an assumed but not necessarily precise nominal dynamic model. We demonstrate our results on the Safety-gym benchmark for Point and Car robots on all tasks where we can outperform state-of-the-art approaches that use only residual model learning or a disturbance observer (DOB). We further validate the efficacy of our framework using a physical F1/10 racing car. Videos: https://sites.google.com/view/res-dob-cbf-rl


Delay-aware Robust Control for Safe Autonomous Driving

arXiv.org Artificial Intelligence

With the advancement of affordable self-driving vehicles using complicated nonlinear optimization but limited computation resources, computation time becomes a matter of concern. Other factors such as actuator dynamics and actuator command processing cost also unavoidably cause delays. In high-speed scenarios, these delays are critical to the safety of a vehicle. Recent works consider these delays individually, but none unifies them all in the context of autonomous driving. Moreover, recent works inappropriately consider computation time as a constant or a large upper bound, which makes the control either less responsive or over-conservative. To deal with all these delays, we present a unified framework by 1) modeling actuation dynamics, 2) using robust tube model predictive control, 3) using a novel adaptive Kalman filter without assuminga known process model and noise covariance, which makes the controller safe while minimizing conservativeness. On onehand, our approach can serve as a standalone controller; on theother hand, our approach provides a safety guard for a high-level controller, which assumes no delay. This can be used for compensating the sim-to-real gap when deploying a black-box learning-enabled controller trained in a simplistic environment without considering delays for practical vehicle systems.


Towards Low-Barrier Cybersecurity Research and Education for Industrial Control Systems

arXiv.org Artificial Intelligence

The protection of Industrial Control Systems (ICS) that are employed in public critical infrastructures is of utmost importance due to catastrophic physical damages cyberattacks may cause. The research community requires testbeds for validation and comparing various intrusion detection algorithms to protect ICS. However, there exist high barriers to entry for research and education in the ICS cybersecurity domain due to expensive hardware, software, and inherent dangers of manipulating real-world systems. To close the gap, built upon recently developed 3D high-fidelity simulators, we further showcase our integrated framework to automatically launch cyberattacks, collect data, train machine learning models, and evaluate for practical chemical and manufacturing processes. On our testbed, we validate our proposed intrusion detection model called Minimal Threshold and Window SVM (MinTWin SVM) that utilizes unsupervised machine learning via a one-class SVM in combination with a sliding window and classification threshold. Results show that MinTWin SVM minimizes false positives and is responsive to physical process anomalies. Furthermore, we incorporate our framework with ICS cybersecurity education by using our dataset in an undergraduate machine learning course where students gain hands-on experience in practicing machine learning theory with a practical ICS dataset. All of our implementations have been open-sourced.


Towards Optimal Head-to-head Autonomous Racing with Curriculum Reinforcement Learning

arXiv.org Artificial Intelligence

Head-to-head autonomous racing is a challenging problem, as the vehicle needs to operate at the friction or handling limits in order to achieve minimum lap times while also actively looking for strategies to overtake/stay ahead of the opponent. In this work we propose a head-to-head racing environment for reinforcement learning which accurately models vehicle dynamics. Some previous works have tried learning a policy directly in the complex vehicle dynamics environment but have failed to learn an optimal policy. In this work, we propose a curriculum learning-based framework by transitioning from a simpler vehicle model to a more complex real environment to teach the reinforcement learning agent a policy closer to the optimal policy. We also propose a control barrier function-based safe reinforcement learning algorithm to enforce the safety of the agent in a more effective way while not compromising on optimality.


Adaptive Planning and Control with Time-Varying Tire Models for Autonomous Racing Using Extreme Learning Machine

arXiv.org Artificial Intelligence

Autonomous racing is a challenging problem, as the vehicle needs to operate at the friction or handling limits in order to achieve minimum lap times. Autonomous race cars require highly accurate perception, state estimation, planning and precise application of controls. What makes it even more challenging is the accurate identification of vehicle model parameters that dictate the effects of the lateral tire slip, which may change over time, for example, due to wear and tear of the tires. Current works either propose model identification offline or need good parameters to start with (within 15-20\% of actual value), which is not enough to account for major changes in tire model that occur during actual races when driving at the control limits. We propose a unified framework which learns the tire model online from the collected data, as well as adjusts the model based on environmental changes even if the model parameters change by a higher margin. We demonstrate our approach in numeric and high-fidelity simulators for a 1:43 scale race car and a full-size car.


Towards Safety Assured End-to-End Vision-Based Control for Autonomous Racing

arXiv.org Artificial Intelligence

Autonomous car racing is a challenging task, as it requires precise applications of control while the vehicle is operating at cornering speeds. Traditional autonomous pipelines require accurate pre-mapping, localization, and planning which make the task computationally expensive and environment-dependent. Recent works propose use of imitation and reinforcement learning to train end-to-end deep neural networks and have shown promising results for high-speed racing. However, the end-to-end models may be dangerous to be deployed on real systems, as the neural networks are treated as black-box models devoid of any provable safety guarantees. In this work we propose a decoupled approach where an optimal end-to-end controller and a state prediction end-to-end model are learned together, and the predicted state of the vehicle is used to formulate a control barrier function for safeguarding the vehicle to stay within lane boundaries. We validate our algorithm both on a high-fidelity Carla driving simulator and a 1/10-scale RC car on a real track. The evaluation results suggest that using an explicit safety controller helps to learn the task safely with fewer iterations and makes it possible to safely navigate the vehicle on the track along the more challenging racing line.


Learning a Safety Verifiable Adaptive Cruise Controller from Human Driving Data

arXiv.org Artificial Intelligence

Imitation learning provides a way to automatically construct a controller by mimicking human behavior from data. For safety-critical systems such as autonomous vehicles, it can be problematic to use controllers learned from data because they cannot be guaranteed to be collision-free. Recently, a method has been proposed for learning a multi-mode hybrid automaton cruise controller (MOHA). Besides being accurate, the logical nature of this model makes it suitable for formal verification. In this paper, we demonstrate this capability using the SpaceEx hybrid model checker as follows. After learning, we translate the automaton model into constraints and equations required by SpaceEx. We then verify that a pure MOHA controller is not collision-free. By adding a safety state based on headway in time, a rule that human drivers should follow anyway, we do obtain a provably safe cruise control. Moreover, the safe controller remains more human-like than existing cruise controllers.


Interpreting Finite Automata for Sequential Data

arXiv.org Machine Learning

Automaton models are often seen as interpretable models. Interpretability itself is not well defined: it remains unclear what interpretability means without first explicitly specifying objectives or desired attributes. In this paper, we identify the key properties used to interpret automata and propose a modification of a state-merging approach to learn variants of finite state automata. We apply the approach to problems beyond typical grammar inference tasks. Additionally, we cover several use-cases for prediction, classification, and clustering on sequential data in both supervised and unsupervised scenarios to show how the identified key properties are applicable in a wide range of contexts.