Lin, Mingan
Baichuan-Audio: A Unified Framework for End-to-End Speech Interaction
Li, Tianpeng, Liu, Jun, Zhang, Tao, Fang, Yuanbo, Pan, Da, Wang, Mingrui, Liang, Zheng, Li, Zehuan, Lin, Mingan, Dong, Guosheng, Xu, Jianhua, Sun, Haoze, Zhou, Zenan, Chen, Weipeng
We introduce Baichuan-Audio, an end-to-end audio large language model that seamlessly integrates audio understanding and generation. It features a text-guided aligned speech generation mechanism, enabling real-time speech interaction with both comprehension and generation capabilities. Baichuan-Audio leverages a pre-trained ASR model, followed by multi-codebook discretization of speech at a frame rate of 12.5 Hz. This multi-codebook setup ensures that speech tokens retain both semantic and acoustic information. To further enhance modeling, an independent audio head is employed to process audio tokens, effectively capturing their unique characteristics. To mitigate the loss of intelligence during pre-training and preserve the original capabilities of the LLM, we propose a two-stage pre-training strategy that maintains language understanding while enhancing audio modeling. Following alignment, the model excels in real-time speech-based conversation and exhibits outstanding question-answering capabilities, demonstrating its versatility and efficiency. The proposed model demonstrates superior performance in real-time spoken dialogue and exhibits strong question-answering abilities. Our code, model and training data are available at https://github.com/baichuan-inc/Baichuan-Audio
Baichuan-Omni-1.5 Technical Report
Li, Yadong, Liu, Jun, Zhang, Tao, Zhang, Tao, Chen, Song, Li, Tianpeng, Li, Zehuan, Liu, Lijun, Ming, Lingfeng, Dong, Guosheng, Pan, Da, Li, Chong, Fang, Yuanbo, Kuang, Dongdong, Wang, Mingrui, Zhu, Chenglin, Zhang, Youwei, Guo, Hongyu, Zhang, Fengyu, Wang, Yuran, Ding, Bowen, Song, Wei, Li, Xu, Huo, Yuqi, Liang, Zheng, Zhang, Shusen, Wu, Xin, Zhao, Shuai, Xiong, Linchu, Wu, Yozhen, Ye, Jiahui, Lu, Wenhao, Li, Bowen, Zhang, Yan, Zhou, Yaqi, Chen, Xin, Su, Lei, Zhang, Hongda, Chen, Fuzhong, Dong, Xuezhen, Nie, Na, Wu, Zhiying, Xiao, Bin, Li, Ting, Dang, Shunya, Zhang, Ping, Sun, Yijia, Wu, Jincheng, Yang, Jinjie, Lin, Xionghai, Ma, Zhi, Wu, Kegeng, li, Jia, Yang, Aiyuan, Liu, Hui, Zhang, Jianqiang, Chen, Xiaoxi, Ai, Guangwei, Zhang, Wentao, Chen, Yicong, Huang, Xiaoqin, Li, Kun, Luo, Wenjing, Duan, Yifei, Zhu, Lingling, Xiao, Ran, Su, Zhe, Pu, Jiani, Wang, Dian, Jia, Xu, Zhang, Tianyu, Ai, Mengyu, Wang, Mang, Qiao, Yujing, Zhang, Lei, Shen, Yanjun, Yang, Fan, Zhen, Miao, Zhou, Yijie, Chen, Mingyang, Li, Fei, Zhu, Chenzheng, Lu, Keer, Zhao, Yaqi, Liang, Hao, Li, Youquan, Qin, Yanzhao, Sun, Linzhuang, Xu, Jianhua, Sun, Haoze, Lin, Mingan, Zhou, Zenan, Chen, Weipeng
We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Baichuan-Omni Technical Report
Li, Yadong, Sun, Haoze, Lin, Mingan, Li, Tianpeng, Dong, Guosheng, Zhang, Tao, Ding, Bowen, Song, Wei, Cheng, Zhenglin, Huo, Yuqi, Chen, Song, Li, Xu, Pan, Da, Zhang, Shusen, Wu, Xin, Liang, Zheng, Liu, Jun, Zhang, Tao, Lu, Keer, Zhao, Yaqi, Shen, Yanjun, Yang, Fan, Yu, Kaicheng, Lin, Tao, Xu, Jianhua, Zhou, Zenan, Chen, Weipeng
The salient multimodal capabilities and interactive experience of GPT-4o highlight its critical role in practical applications, yet it lacks a high-performing open-source counterpart. In this paper, we introduce Baichuan-omni, the first open-source 7B Multimodal Large Language Model (MLLM) adept at concurrently processing and analyzing modalities of image, video, audio, and text, while delivering an advanced multimodal interactive experience and strong performance. We propose an effective multimodal training schema starting with 7B model and proceeding through two stages of multimodal alignment and multitask fine-tuning across audio, image, video, and text modal. This approach equips the language model with the ability to handle visual and audio data effectively. Demonstrating strong performance across various omni-modal and multimodal benchmarks, we aim for this contribution to serve as a competitive baseline for the open-source community in advancing multimodal understanding and real-time interaction.
Baichuan Alignment Technical Report
Lin, Mingan, Yang, Fan, Shen, Yanjun, Sun, Haoze, Li, Tianpeng, Zhang, Tao, Zhu, Chenzheng, Zhang, Tao, Zheng, Miao, Li, Xu, Zhou, Yijie, Chen, Mingyang, Qin, Yanzhao, Li, Youquan, Liang, Hao, Li, Fei, Li, Yadong, Wang, Mang, Dong, Guosheng, Fang, Kun, Xu, Jianhua, Cui, Bin, Zhang, Wentao, Zhou, Zenan, Chen, Weipeng
We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System(PAS), Supervised Fine-Tuning(SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.
Beyond Sight: Towards Cognitive Alignment in LVLM via Enriched Visual Knowledge
Zhao, Yaqi, Yin, Yuanyang, Li, Lin, Lin, Mingan, Huang, Victor Shea-Jay, Chen, Siwei, Chen, Weipeng, Yin, Baoqun, Zhou, Zenan, Zhang, Wentao
Does seeing always mean knowing? Large Vision-Language Models (LVLMs) integrate separately pre-trained vision and language components, often using CLIP-ViT as vision backbone. However, these models frequently encounter a core issue of "cognitive misalignment" between the vision encoder (VE) and the large language model (LLM). Specifically, the VE's representation of visual information may not fully align with LLM's cognitive framework, leading to a mismatch where visual features exceed the language model's interpretive range. To address this, we investigate how variations in VE representations influence LVLM comprehension, especially when the LLM faces VE-Unknown data-images whose ambiguous visual representations challenge the VE's interpretive precision. Accordingly, we construct a multi-granularity landmark dataset and systematically examine the impact of VE-Known and VE-Unknown data on interpretive abilities. Our results show that VE-Unknown data limits LVLM's capacity for accurate understanding, while VE-Known data, rich in distinctive features, helps reduce cognitive misalignment. Building on these insights, we propose Entity-Enhanced Cognitive Alignment (EECA), a method that employs multi-granularity supervision to generate visually enriched, well-aligned tokens that not only integrate within the LLM's embedding space but also align with the LLM's cognitive framework. This alignment markedly enhances LVLM performance in landmark recognition. Our findings underscore the challenges posed by VE-Unknown data and highlight the essential role of cognitive alignment in advancing multimodal systems.