Goto

Collaborating Authors

 Lin, Meixia


DNNLasso: Scalable Graph Learning for Matrix-Variate Data

arXiv.org Artificial Intelligence

We consider the problem of jointly learning row-wise and column-wise dependencies of matrix-variate observations, which are modelled separately by two precision matrices. Due to the complicated structure of Kronecker-product precision matrices in the commonly used matrix-variate Gaussian graphical models, a sparser Kronecker-sum structure was proposed recently based on the Cartesian product of graphs. However, existing methods for estimating Kronecker-sum structured precision matrices do not scale well to large scale datasets. In this paper, we introduce DNNLasso, a diagonally non-negative graphical lasso model for estimating the Kronecker-sum structured precision matrix, which outperforms the state-of-the-art methods by a large margin in both accuracy and computational time. Our code is available at https://github.com/YangjingZhang/DNNLasso.


Learning the hub graphical Lasso model with the structured sparsity via an efficient algorithm

arXiv.org Artificial Intelligence

Graphical models have exhibited their performance in numerous tasks ranging from biological analysis to recommender systems. However, graphical models with hub nodes are computationally difficult to fit, particularly when the dimension of the data is large. To efficiently estimate the hub graphical models, we introduce a two-phase algorithm. The proposed algorithm first generates a good initial point via a dual alternating direction method of multipliers (ADMM), and then warm starts a semismooth Newton (SSN) based augmented Lagrangian method (ALM) to compute a solution that is accurate enough for practical tasks. The sparsity structure of the generalized Jacobian ensures that the algorithm can obtain a nice solution very efficiently. Comprehensive experiments on both synthetic data and real data show that it obviously outperforms the existing state-of-the-art algorithms. In particular, in some high dimensional tasks, it can save more than 70\% of the execution time, meanwhile still achieves a high-quality estimation.


Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD

arXiv.org Machine Learning

Stochastic gradient descent (SGD) is a cornerstone of machine learning. When the number N of data items is large, SGD relies on constructing an unbiased estimator of the gradient of the empirical risk using a small subset of the original dataset, called a minibatch. Default minibatch construction involves uniformly sampling a subset of the desired size, but alternatives have been explored for variance reduction. In particular, experimental evidence suggests drawing minibatches from determinantal point processes (DPPs), distributions over minibatches that favour diversity among selected items. However, like in recent work on DPPs for coresets, providing a systematic and principled understanding of how and why DPPs help has been difficult. In this work, we contribute an orthogonal polynomial-based DPP paradigm for minibatch sampling in SGD. Our approach leverages the specific data distribution at hand, which endows it with greater sensitivity and power over existing data-agnostic methods. We substantiate our method via a detailed theoretical analysis of its convergence properties, interweaving between the discrete data set and the underlying continuous domain. In particular, we show how specific DPPs and a string of controlled approximations can lead to gradient estimators with a variance that decays faster with the batchsize than under uniform sampling. Coupled with existing finite-time guarantees for SGD on convex objectives, this entails that, DPP minibatches lead to a smaller bound on the mean square approximation error than uniform minibatches. Moreover, our estimators are amenable to a recent algorithm that directly samples linear statistics of DPPs (i.e., the gradient estimator) without sampling the underlying DPP (i.e., the minibatch), thereby reducing computational overhead. We provide detailed synthetic as well as real data experiments to substantiate our theoretical claims.


Efficient sparse Hessian based algorithms for the clustered lasso problem

arXiv.org Machine Learning

We focus on solving the clustered lasso problem, which is a least squares problem with the $\ell_1$-type penalties imposed on both the coefficients and their pairwise differences to learn the group structure of the regression parameters. Here we first reformulate the clustered lasso regularizer as a weighted ordered-lasso regularizer, which is essential in reducing the computational cost from $O(n^2)$ to $O(n\log (n))$. We then propose an inexact semismooth Newton augmented Lagrangian (SSNAL) algorithm to solve the clustered lasso problem or its dual via this equivalent formulation, depending on whether the sample size is larger than the dimension of the features. An essential component of the SSNAL algorithm is the computation of the generalized Jacobian of the proximal mapping of the clustered lasso regularizer. Based on the new formulation, we derive an efficient procedure for its computation. Comprehensive results on the global convergence and local linear convergence of the SSNAL algorithm are established. For the purpose of exposition and comparison, we also summarize/design several first-order methods that can be used to solve the problem under consideration, but with the key improvement from the new formulation of the clustered lasso regularizer. As a demonstration of the applicability of our algorithms, numerical experiments on the clustered lasso problem are performed. The experiments show that the SSNAL algorithm substantially outperforms the best alternative algorithm for the clustered lasso problem.