Goto

Collaborating Authors

 Lin, Liwei


Instruct-MusicGen: Unlocking Text-to-Music Editing for Music Language Models via Instruction Tuning

arXiv.org Artificial Intelligence

Recent advances in text-to-music editing, which employ text queries to modify music (e.g. by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments.


Arrange, Inpaint, and Refine: Steerable Long-term Music Audio Generation and Editing via Content-based Controls

arXiv.org Artificial Intelligence

Controllable music generation plays a vital role in human-AI music co-creation. While Large Language Models (LLMs) have shown promise in generating high-quality music, their focus on autoregressive generation limits their utility in music editing tasks. To bridge this gap, we introduce a novel Parameter-Efficient Fine-Tuning (PEFT) method. This approach enables autoregressive language models to seamlessly address music inpainting tasks. Additionally, our PEFT method integrates frame-level content-based controls, facilitating track-conditioned music refinement and score-conditioned music arrangement. We apply this method to fine-tune MusicGen, a leading autoregressive music generation model. Our experiments demonstrate promising results across multiple music editing tasks, offering more flexible controls for future AI-driven music editing tools. A demo page\footnote{\url{https://kikyo-16.github.io/AIR/}.} showcasing our work and source codes\footnote{\url{https://github.com/Kikyo-16/airgen}.} are available online.


Content-based Controls For Music Large Language Modeling

arXiv.org Artificial Intelligence

Recent years have witnessed a rapid growth of large-scale language models in the domain of music audio. Such models enable end-to-end generation of higher-quality music, and some allow conditioned generation using text descriptions. However, the control power of text controls on music is intrinsically limited, as they can only describe music indirectly through meta-data (such as singers and instruments) or high-level representations (such as genre and emotion). We aim to further equip the models with direct and content-based controls on innate music languages such as pitch, chords and drum track. To this end, we contribute Coco-Mulla, a content-based control method for music large language modeling. It uses a parameter-efficient fine-tuning (PEFT) method tailored for Transformer-based audio models. Experiments show that our approach achieved high-quality music generation with low-resource semi-supervised learning, tuning with less than 4% parameters compared to the original model and training on a small dataset with fewer than 300 songs. Moreover, our approach enables effective content-based controls, and we illustrate the control power via chords and rhythms, two of the most salient features of music audio. Furthermore, we show that by combining content-based controls and text descriptions, our system achieves flexible music variation generation and style transfer. Our source codes and demos are available online.


A Unified Model for Zero-shot Music Source Separation, Transcription and Synthesis

arXiv.org Artificial Intelligence

We propose a unified model for three inter-related tasks: 1) to \textit{separate} individual sound sources from a mixed music audio, 2) to \textit{transcribe} each sound source to MIDI notes, and 3) to\textit{ synthesize} new pieces based on the timbre of separated sources. The model is inspired by the fact that when humans listen to music, our minds can not only separate the sounds of different instruments, but also at the same time perceive high-level representations such as score and timbre. To mirror such capability computationally, we designed a pitch-timbre disentanglement module based on a popular encoder-decoder neural architecture for source separation. The key inductive biases are vector-quantization for pitch representation and pitch-transformation invariant for timbre representation. In addition, we adopted a query-by-example method to achieve \textit{zero-shot} learning, i.e., the model is capable of doing source separation, transcription, and synthesis for \textit{unseen} instruments. The current design focuses on audio mixtures of two monophonic instruments. Experimental results show that our model outperforms existing multi-task baselines, and the transcribed score serves as a powerful auxiliary for separation tasks.


What you need is a more professional teacher

arXiv.org Machine Learning

We propose a simple and efficient method to combine semi-supervised learning with weakly-supervised learning for deep neural networks. Designing deep neural networks for weakly-supervised learning is always accompanied by a tradeoff between fine-information and coarse-level classification accuracy. While using unlabeled data for semi-supervised learning, in contrast to seeking for this tradeoff, we design two extremely different models for different targets, one of which just pursues finer information for the final target. Another one is more professional to achieve higher coarse-level classification accuracy so that it is regarded as a more professional teacher to teach the former model using unlabeled data. We present an end-to-end semi-supervised learning process termed guided learning for these two different models so that improve the training efficiency. Our approach improves the $1^{st}$ place result on Task4 of the DCASE2018 challenge from $32.4\%$ to $38.3\%$, achieving start-of-art performance.