Goto

Collaborating Authors

 Lin, Leyu


DFGNN: Dual-frequency Graph Neural Network for Sign-aware Feedback

arXiv.org Artificial Intelligence

The graph-based recommendation has achieved great success in recent years. However, most existing graph-based recommendations focus on capturing user preference based on positive edges/feedback, while ignoring negative edges/feedback (e.g., dislike, low rating) that widely exist in real-world recommender systems. How to utilize negative feedback in graph-based recommendations still remains underexplored. In this study, we first conducted a comprehensive experimental analysis and found that (1) existing graph neural networks are not well-suited for modeling negative feedback, which acts as a high-frequency signal in a user-item graph. (2) The graph-based recommendation suffers from the representation degeneration problem. Based on the two observations, we propose a novel model that models positive and negative feedback from a frequency filter perspective called Dual-frequency Graph Neural Network for Sign-aware Recommendation (DFGNN). Specifically, in DFGNN, the designed dual-frequency graph filter (DGF) captures both low-frequency and high-frequency signals that contain positive and negative feedback. Furthermore, the proposed signed graph regularization is applied to maintain the user/item embedding uniform in the embedding space to alleviate the representation degeneration problem. Additionally, we conduct extensive experiments on real-world datasets and demonstrate the effectiveness of the proposed model. Codes of our model will be released upon acceptance.


AgentCF: Collaborative Learning with Autonomous Language Agents for Recommender Systems

arXiv.org Artificial Intelligence

Recently, there has been an emergence of employing LLM-powered agents as believable human proxies, based on their remarkable decision-making capability. However, existing studies mainly focus on simulating human dialogue. Human non-verbal behaviors, such as item clicking in recommender systems, although implicitly exhibiting user preferences and could enhance the modeling of users, have not been deeply explored. The main reasons lie in the gap between language modeling and behavior modeling, as well as the incomprehension of LLMs about user-item relations. To address this issue, we propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering. We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimizes both kinds of agents together. Specifically, at each time step, we first prompt the user and item agents to interact autonomously. Then, based on the disparities between the agents' decisions and real-world interaction records, user and item agents are prompted to reflect on and adjust the misleading simulations collaboratively, thereby modeling their two-sided relations. The optimized agents can also propagate their preferences to other agents in subsequent interactions, implicitly capturing the collaborative filtering idea. Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions. The results show that these agents can demonstrate personalized behaviors akin to those of real-world individuals, sparking the development of next-generation user behavior simulation.


Graph Exploration Matters: Improving both individual-level and system-level diversity in WeChat Feed Recommender

arXiv.org Artificial Intelligence

There are roughly three stages in real industrial recommendation systems, candidates generation (retrieval), ranking and reranking. Individual-level diversity and system-level diversity are both important for industrial recommender systems. The former focus on each single user's experience, while the latter focus on the difference among users. Graph-based retrieval strategies are inevitably hijacked by heavy users and popular items, leading to the convergence of candidates for users and the lack of system-level diversity. Meanwhile, in the reranking phase, Determinantal Point Process (DPP) is deployed to increase individual-level diverisity. Heavily relying on the semantic information of items, DPP suffers from clickbait and inaccurate attributes. Besides, most studies only focus on one of the two levels of diversity, and ignore the mutual influence among different stages in real recommender systems. We argue that individual-level diversity and system-level diversity should be viewed as an integrated problem, and we provide an efficient and deployable solution for web-scale recommenders. Generally, we propose to employ the retrieval graph information in diversity-based reranking, by which to weaken the hidden similarity of items exposed to users, and consequently gain more graph explorations to improve the system-level diveristy. Besides, we argue that users' propensity for diversity changes over time in content feed recommendation. Therefore, with the explored graph, we also propose to capture the user's real-time personalized propensity to the diversity. We implement and deploy the combined system in WeChat App's Top Stories used by hundreds of millions of users. Offline simulations and online A/B tests show our solution can effectively improve both user engagement and system revenue.


Recommendation as Instruction Following: A Large Language Model Empowered Recommendation Approach

arXiv.org Artificial Intelligence

In the past decades, recommender systems have attracted much attention in both research and industry communities, and a large number of studies have been devoted to developing effective recommendation models. Basically speaking, these models mainly learn the underlying user preference from historical behavior data, and then estimate the user-item matching relationships for recommendations. Inspired by the recent progress on large language models (LLMs), we take a different approach to developing the recommendation models, considering recommendation as instruction following by LLMs. The key idea is that the preferences or needs of a user can be expressed in natural language descriptions (called instructions), so that LLMs can understand and further execute the instruction for fulfilling the recommendation task. Instead of using public APIs of LLMs, we instruction tune an open-source LLM (3B Flan-T5-XL), in order to better adapt LLMs to recommender systems. For this purpose, we first design a general instruction format for describing the preference, intention, task form and context of a user in natural language. Then we manually design 39 instruction templates and automatically generate a large amount of user-personalized instruction data (252K instructions) with varying types of preferences and intentions. To demonstrate the effectiveness of our approach, we instantiate the instruction templates into several widely-studied recommendation (or search) tasks, and conduct extensive experiments on these tasks with real-world datasets. Experiment results show that the proposed approach can outperform several competitive baselines, including the powerful GPT-3.5, on these evaluation tasks. Our approach sheds light on developing more user-friendly recommender systems, in which users can freely communicate with the system and obtain more accurate recommendations via natural language instructions.


Better Pre-Training by Reducing Representation Confusion

arXiv.org Artificial Intelligence

In this work, we revisit the Transformer-based pre-trained language models and identify two different types of information confusion in position encoding and model representations, respectively. Firstly, we show that in the relative position encoding, the joint modeling about relative distances and directions brings confusion between two heterogeneous information. It may make the model unable to capture the associative semantics of the same distance and the opposite directions, which in turn affects the performance of downstream tasks. Secondly, we notice the BERT with Mask Language Modeling (MLM) pre-training objective outputs similar token representations (last hidden states of different tokens) and head representations (attention weights of different heads), which may make the diversity of information expressed by different tokens and heads limited. Motivated by the above investigation, we propose two novel techniques to improve pre-trained language models: Decoupled Directional Relative Position (DDRP) encoding and MTH pre-training objective. DDRP decouples the relative distance features and the directional features in classical relative position encoding. MTH applies two novel auxiliary regularizers besides MLM to enlarge the dissimilarities between (a) last hidden states of different tokens, and (b) attention weights of different heads. These designs allow the model to capture different categories of information more clearly, as a way to alleviate information confusion in representation learning for better optimization. Extensive experiments and ablation studies on GLUE benchmark demonstrate the effectiveness of our proposed methods.


Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start Users

arXiv.org Artificial Intelligence

Cold-start problems are enormous challenges in practical recommender systems. One promising solution for this problem is cross-domain recommendation (CDR) which leverages rich information from an auxiliary (source) domain to improve the performance of recommender system in the target domain. In these CDR approaches, the family of Embedding and Mapping methods for CDR (EMCDR) is very effective, which explicitly learn a mapping function from source embeddings to target embeddings with overlapping users. However, these approaches suffer from one serious problem: the mapping function is only learned on limited overlapping users, and the function would be biased to the limited overlapping users, which leads to unsatisfying generalization ability and degrades the performance on cold-start users in the target domain. With the advantage of meta learning which has good generalization ability to novel tasks, we propose a transfer-meta framework for CDR (TMCDR) which has a transfer stage and a meta stage. In the transfer (pre-training) stage, a source model and a target model are trained on source and target domains, respectively. In the meta stage, a task-oriented meta network is learned to implicitly transform the user embedding in the source domain to the target feature space. In addition, the TMCDR is a general framework that can be applied upon various base models, e.g., MF, BPR, CML. By utilizing data from Amazon and Douban, we conduct extensive experiments on 6 cross-domain tasks to demonstrate the superior performance and compatibility of TMCDR.


Real-time Attention Based Look-alike Model for Recommender System

arXiv.org Machine Learning

Recently, deep learning models play more and more important roles in contents recommender systems. However, although the performance of recommendations is greatly improved, the "Matthew effect" becomes increasingly evident. While the head contents get more and more popular, many competitive long-tail contents are difficult to achieve timely exposure because of lacking behavior features. This issue has badly impacted the quality and diversity of recommendations. To solve this problem, look-alike algorithm is a good choice to extend audience for high quality long-tail contents. But the traditional look-alike models which widely used in online advertising are not suitable for recommender systems because of the strict requirement of both real-time and effectiveness. This paper introduces a real-time attention based look-alike model (RALM) for recommender systems, which tackles the challenge of conflict between real-time and effectiveness. RALM realizes real-time look-alike audience extension benefiting from seeds-to-user similarity prediction and improves the effectiveness through optimizing user representation learning and look-alike learning modeling. For user representation learning, we propose a novel neural network structure named attention merge layer to replace the concatenation layer, which significantly improves the expressive ability of multi-fields feature learning. On the other hand, considering the various members of seeds, we design global attention unit and local attention unit to learn robust and adaptive seeds representation with respect to a certain target user. At last, we introduce seeds clustering mechanism which not only reduces the time complexity of attention units prediction but also minimizes the loss of seeds information at the same time. According to our experiments, RALM shows superior effectiveness and performance than popular look-alike models.


Hierarchical Neural Network for Extracting Knowledgeable Snippets and Documents

arXiv.org Artificial Intelligence

In this study, we focus on extracting knowledgeable snippets and annotating knowledgeable documents from Web corpus, consisting of the documents from social media and We-media. Informally, knowledgeable snippets refer to the text describing concepts, properties of entities, or relations among entities, while knowledgeable documents are the ones with enough knowledgeable snippets. These knowledgeable snippets and documents could be helpful in multiple applications, such as knowledge base construction and knowledge-oriented service. Previous studies extracted the knowledgeable snippets using the pattern-based method. Here, we propose the semantic-based method for this task. Specifically, a CNN based model is developed to extract knowledgeable snippets and annotate knowledgeable documents simultaneously. Additionally, a "low-level sharing, high-level splitting" structure of CNN is designed to handle the documents from different content domains. Compared with building multiple domain-specific CNNs, this joint model not only critically saves the training time, but also improves the prediction accuracy visibly. The superiority of the proposed method is demonstrated in a real dataset from Wechat public platform.


Incorporating Chinese Characters of Words for Lexical Sememe Prediction

arXiv.org Artificial Intelligence

Sememes are minimum semantic units of concepts in human languages, such that each word sense is composed of one or multiple sememes. Words are usually manually annotated with their sememes by linguists, and form linguistic common-sense knowledge bases widely used in various NLP tasks. Recently, the lexical sememe prediction task has been introduced. It consists of automatically recommending sememes for words, which is expected to improve annotation efficiency and consistency. However, existing methods of lexical sememe prediction typically rely on the external context of words to represent the meaning, which usually fails to deal with low-frequency and out-of-vocabulary words. To address this issue for Chinese, we propose a novel framework to take advantage of both internal character information and external context information of words. We experiment on HowNet, a Chinese sememe knowledge base, and demonstrate that our framework outperforms state-of-the-art baselines by a large margin, and maintains a robust performance even for low-frequency words.


Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning With Confidence

AAAI Conferences

Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.