Goto

Collaborating Authors

 Lin, Kunyang


Fine-Grained Alignment in Vision-and-Language Navigation through Bayesian Optimization

arXiv.org Artificial Intelligence

This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal embeddings, we introduce a novel Bayesian Optimization-based adversarial optimization framework for creating fine-grained contrastive vision samples. To validate the proposed methodology, we conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-grained vision negatives. We conduct experiments on two common VLN benchmarks R2R and REVERIE, experiments on the them demonstrate that these embeddings benefit navigation, and can lead to a promising performance enhancement. Our source code and trained models are available at: https://anonymous.4open.science/r/FGVLN.


DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Learning optimal behavior policy for each agent in multi-agent systems is an essential yet difficult problem. Despite fruitful progress in multi-agent reinforcement learning, the challenge of addressing the dynamics of whether two agents should exhibit consistent behaviors is still under-explored. In this paper, we propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents by utilizing intrinsic rewards to learn the optimal policy for each agent. We begin by defining behavior consistency as the divergence in output actions between two agents when provided with the same observation. Subsequently, we introduce dynamic consistency intrinsic reward (DCIR) to stimulate agents to be aware of others' behaviors and determine whether to be consistent with them. Lastly, we devise a dynamic scale network (DSN) that provides learnable scale factors for the agent at every time step to dynamically ascertain whether to award consistent behavior and the magnitude of rewards. We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement, demonstrating its efficacy.


Learning Vision-and-Language Navigation from YouTube Videos

arXiv.org Artificial Intelligence

Vision-and-language navigation (VLN) requires an embodied agent to navigate in realistic 3D environments using natural language instructions. Existing VLN methods suffer from training on small-scale environments or unreasonable path-instruction datasets, limiting the generalization to unseen environments. There are massive house tour videos on YouTube, providing abundant real navigation experiences and layout information. However, these videos have not been explored for VLN before. In this paper, we propose to learn an agent from these videos by creating a large-scale dataset which comprises reasonable path-instruction pairs from house tour videos and pre-training the agent on it. To achieve this, we have to tackle the challenges of automatically constructing path-instruction pairs and exploiting real layout knowledge from raw and unlabeled videos. To address these, we first leverage an entropy-based method to construct the nodes of a path trajectory. Then, we propose an action-aware generator for generating instructions from unlabeled trajectories. Last, we devise a trajectory judgment pretext task to encourage the agent to mine the layout knowledge. Experimental results show that our method achieves state-of-the-art performance on two popular benchmarks (R2R and REVERIE). Code is available at https://github.com/JeremyLinky/YouTube-VLN