Plotting

 Lin, Jimmy


Categorical Syllogisms Revisited: A Review of the Logical Reasoning Abilities of LLMs for Analyzing Categorical Syllogism

arXiv.org Artificial Intelligence

There have been a huge number of benchmarks proposed to evaluate how large language models (LLMs) behave for logic inference tasks. However, it remains an open question how to properly evaluate this ability. In this paper, we provide a systematic overview of prior works on the logical reasoning ability of LLMs for analyzing categorical syllogisms. We first investigate all the possible variations for the categorical syllogisms from a purely logical perspective and then examine the underlying configurations (i.e., mood and figure) tested by the existing datasets. Our results indicate that compared to template-based synthetic datasets, crowdsourcing approaches normally sacrifice the coverage of configurations (i.e., mood and figure) of categorical syllogisms for more language variations, thus bringing challenges to fully testing LLMs under different situations. We then proceed to summarize the findings and observations for the performances of LLMs to infer the validity of syllogisms from the current literature. The error rate breakdown analyses suggest that the interpretation of the quantifiers seems to be the current bottleneck that limits the performances of the LLMs and is thus worth more attention. Finally, we discuss several points that might be worth considering when researchers plan on the future release of categorical syllogism datasets. We hope our work will not only provide a timely review of the current literature regarding categorical syllogisms, but also motivate more interdisciplinary research between communities, specifically computational linguists and logicians.


Words Worth a Thousand Pictures: Measuring and Understanding Perceptual Variability in Text-to-Image Generation

arXiv.org Artificial Intelligence

Diffusion models are the state of the art in text-to-image generation, but their perceptual variability remains understudied. In this paper, we examine how prompts affect image variability in black-box diffusion-based models. We propose W1KP, a human-calibrated measure of variability in a set of images, bootstrapped from existing image-pair perceptual distances. Current datasets do not cover recent diffusion models, thus we curate three test sets for evaluation. Our best perceptual distance outperforms nine baselines by up to 18 points in accuracy, and our calibration matches graded human judgements 78% of the time. Using W1KP, we study prompt reusability and show that Imagen prompts can be reused for 10-50 random seeds before new images become too similar to already generated images, while Stable Diffusion XL and DALL-E 3 can be reused 50-200 times. Lastly, we analyze 56 linguistic features of real prompts, finding that the prompt's length, CLIP embedding norm, concreteness, and word senses influence variability most. As far as we are aware, we are the first to analyze diffusion variability from a visuolinguistic perspective. Our project page is at http://w1kp.com


Nearest Neighbor Speculative Decoding for LLM Generation and Attribution

arXiv.org Artificial Intelligence

Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach these limitations by refining the output of an LM for a given prompt using its nearest neighbor matches in a non-parametric data store. However, these models often exhibit slow inference speeds and produce non-fluent texts. In this paper, we introduce Nearest Neighbor Speculative Decoding (NEST), a novel semi-parametric language modeling approach that is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources. NEST performs token-level retrieval at each inference step to compute a semi-parametric mixture distribution and identify promising span continuations in a corpus. It then uses an approximate speculative decoding procedure that accepts a prefix of the retrieved span or generates a new token. NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks, surpassing the conventional kNN-LM method and performing competitively with in-context retrieval augmentation. In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.


FLAME: Factuality-Aware Alignment for Large Language Models

arXiv.org Artificial Intelligence

Alignment is a standard procedure to fine-tune pre-trained large language models (LLMs) to follow natural language instructions and serve as helpful AI assistants. We have observed, however, that the conventional alignment process fails to enhance the factual accuracy of LLMs, and often leads to the generation of more false facts (i.e. hallucination). In this paper, we study how to make the LLM alignment process more factual, by first identifying factors that lead to hallucination in both alignment steps:\ supervised fine-tuning (SFT) and reinforcement learning (RL). In particular, we find that training the LLM on new knowledge or unfamiliar texts can encourage hallucination. This makes SFT less factual as it trains on human labeled data that may be novel to the LLM. Furthermore, reward functions used in standard RL can also encourage hallucination, because it guides the LLM to provide more helpful responses on a diverse set of instructions, often preferring longer and more detailed responses. Based on these observations, we propose factuality-aware alignment, comprised of factuality-aware SFT and factuality-aware RL through direct preference optimization. Experiments show that our proposed factuality-aware alignment guides LLMs to output more factual responses while maintaining instruction-following capability.


Jointly Modeling Spatio-Temporal Features of Tactile Signals for Action Classification

arXiv.org Artificial Intelligence

Tactile signals collected by wearable electronics are essential in modeling and understanding human behavior. One of the main applications of tactile signals is action classification, especially in healthcare and robotics. However, existing tactile classification methods fail to capture the spatial and temporal features of tactile signals simultaneously, which results in sub-optimal performances. In this paper, we design Spatio-Temporal Aware tactility Transformer (STAT) to utilize continuous tactile signals for action classification. We propose spatial and temporal embeddings along with a new temporal pretraining task in our model, which aims to enhance the transformer in modeling the spatio-temporal features of tactile signals. Specially, the designed temporal pretraining task is to differentiate the time order of tubelet inputs to model the temporal properties explicitly. Experimental results on a public action classification dataset demonstrate that our model outperforms state-of-the-art methods in all metrics.


Zero-Shot Cross-Lingual Reranking with Large Language Models for Low-Resource Languages

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown impressive zero-shot capabilities in various document reranking tasks. Despite their successful implementations, there is still a gap in existing literature on their effectiveness in low-resource languages. To address this gap, we investigate how LLMs function as rerankers in cross-lingual information retrieval (CLIR) systems for African languages. Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba) and we examine cross-lingual reranking with queries in English and passages in the African languages. Additionally, we analyze and compare the effectiveness of monolingual reranking using both query and document translations. We also evaluate the effectiveness of LLMs when leveraging their own generated translations. To get a grasp of the effectiveness of multiple LLMs, our study focuses on the proprietary models RankGPT-4 and RankGPT-3.5, along with the open-source model, RankZephyr. While reranking remains most effective in English, our results reveal that cross-lingual reranking may be competitive with reranking in African languages depending on the multilingual capability of the LLM.


NoMIRACL: Knowing When You Don't Know for Robust Multilingual Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) grounds large language model (LLM) output by leveraging external knowledge sources to reduce factual hallucinations. However, prior works lack a comprehensive evaluation of different language families, making it challenging to evaluate LLM robustness against errors in external retrieved knowledge. To overcome this, we establish NoMIRACL, a human-annotated dataset for evaluating LLM robustness in RAG across 18 typologically diverse languages. NoMIRACL includes both a non-relevant and a relevant subset. Queries in the non-relevant subset contain passages manually judged as non-relevant or noisy, whereas queries in the relevant subset include at least a single judged relevant passage. We measure LLM robustness using two metrics: (i) hallucination rate, measuring model tendency to hallucinate an answer, when the answer is not present in passages in the non-relevant subset, and (ii) error rate, measuring model inaccuracy to recognize relevant passages in the relevant subset. We build a GPT-4 baseline which achieves a 33.2% hallucination rate on the non-relevant and a 14.9% error rate on the relevant subset on average. Our evaluation reveals that GPT-4 hallucinates frequently in high-resource languages, such as French or English. This work highlights an important avenue for future research to improve LLM robustness to learn how to better reject non-relevant information in RAG.


Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models

arXiv.org Artificial Intelligence

Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources.


What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations

arXiv.org Artificial Intelligence

Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.


Generate, Filter, and Fuse: Query Expansion via Multi-Step Keyword Generation for Zero-Shot Neural Rankers

arXiv.org Artificial Intelligence

Query expansion has been proved to be effective in improving recall and precision of first-stage retrievers, and yet its influence on a complicated, state-of-the-art cross-encoder ranker remains under-explored. We first show that directly applying the expansion techniques in the current literature to state-of-the-art neural rankers can result in deteriorated zero-shot performance. To this end, we propose GFF, a pipeline that includes a large language model and a neural ranker, to Generate, Filter, and Fuse query expansions more effectively in order to improve the zero-shot ranking metrics such as nDCG@10. Specifically, GFF first calls an instruction-following language model to generate query-related keywords through a reasoning chain. Leveraging self-consistency and reciprocal rank weighting, GFF further filters and combines the ranking results of each expanded query dynamically. By utilizing this pipeline, we show that GFF can improve the zero-shot nDCG@10 on BEIR and TREC DL 2019/2020. We also analyze different modelling choices in the GFF pipeline and shed light on the future directions in query expansion for zero-shot neural rankers.