Lin, Jiayu
From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents
Mou, Xinyi, Ding, Xuanwen, He, Qi, Wang, Liang, Liang, Jingcong, Zhang, Xinnong, Sun, Libo, Lin, Jiayu, Zhou, Jie, Huang, Xuanjing, Wei, Zhongyu
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {\url{https://github.com/FudanDISC/SocialAgent}}.
AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios
Mou, Xinyi, Liang, Jingcong, Lin, Jiayu, Zhang, Xinnong, Liu, Xiawei, Yang, Shiyue, Ye, Rong, Chen, Lei, Kuang, Haoyu, Huang, Xuanjing, Wei, Zhongyu
Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at \url{https://github.com/ljcleo/agent_sense}.
ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents
Zhang, Xinnong, Lin, Jiayu, Sun, Libo, Qi, Weihong, Yang, Yihang, Chen, Yue, Lyu, Hanjia, Mou, Xinyi, Chen, Siming, Luo, Jiebo, Huang, Xuanjing, Tang, Shiping, Wei, Zhongyu
The massive population election simulation aims to model the preferences of specific groups in particular election scenarios. It has garnered significant attention for its potential to forecast real-world social trends. Traditional agent-based modeling (ABM) methods are constrained by their ability to incorporate complex individual background information and provide interactive prediction results. In this paper, we introduce ElectionSim, an innovative election simulation framework based on large language models, designed to support accurate voter simulations and customized distributions, together with an interactive platform to dialogue with simulated voters. We present a million-level voter pool sampled from social media platforms to support accurate individual simulation. We also introduce PPE, a poll-based presidential election benchmark to assess the performance of our framework under the U.S. presidential election scenario. Through extensive experiments and analyses, we demonstrate the effectiveness and robustness of our framework in U.S. presidential election simulations.
A Comparative Study of Pre-training and Self-training
Wang, Yiheng, Lin, Jiayu, Lin, Zuoquan
Pre-training and self-training are two approaches to semi-supervised learning. The comparison between pre-training and self-training has been explored. However, the previous works led to confusing findings: self-training outperforms pre-training experienced on some tasks in computer vision, and contrarily, pre-training outperforms self-training experienced on some tasks in natural language processing, under certain conditions of incomparable settings. We propose, comparatively and exhaustively, an ensemble method to empirical study all feasible training paradigms combining pre-training, self-training, and fine-tuning within consistent foundational settings comparable to data augmentation. We conduct experiments on six datasets, four data augmentation, and imbalanced data for sentiment analysis and natural language inference tasks. Our findings confirm that the pre-training and fine-tuning paradigm yields the best overall performances. Moreover, self-training offers no additional benefits when combined with semi-supervised pre-training.
Argue with Me Tersely: Towards Sentence-Level Counter-Argument Generation
Lin, Jiayu, Ye, Rong, Han, Meng, Zhang, Qi, Lai, Ruofei, Zhang, Xinyu, Cao, Zhao, Huang, Xuanjing, Wei, Zhongyu
Counter-argument generation -- a captivating area in computational linguistics -- seeks to craft statements that offer opposing views. While most research has ventured into paragraph-level generation, sentence-level counter-argument generation beckons with its unique constraints and brevity-focused challenges. Furthermore, the diverse nature of counter-arguments poses challenges for evaluating model performance solely based on n-gram-based metrics. In this paper, we present the ArgTersely benchmark for sentence-level counter-argument generation, drawing from a manually annotated dataset from the ChangeMyView debate forum. We also propose Arg-LlaMA for generating high-quality counter-argument. For better evaluation, we trained a BERT-based evaluator Arg-Judge with human preference data. We conducted comparative experiments involving various baselines such as LlaMA, Alpaca, GPT-3, and others. The results show the competitiveness of our proposed framework and evaluator in counter-argument generation tasks. Code and data are available at https://github.com/amazingljy1206/ArgTersely.