Goto

Collaborating Authors

 Lin, Jian


Proprioceptive State Estimation for Amphibious Tactile Sensing

arXiv.org Artificial Intelligence

This paper presents a novel vision-based proprioception approach for a soft robotic finger capable of estimating and reconstructing tactile interactions in terrestrial and aquatic environments. The key to this system lies in the finger's unique metamaterial structure, which facilitates omni-directional passive adaptation during grasping, protecting delicate objects across diverse scenarios. A compact in-finger camera captures high-framerate images of the finger's deformation during contact, extracting crucial tactile data in real time. We present a method of the volumetric discretized model of the soft finger and use the geometry constraints captured by the camera to find the optimal estimation of the deformed shape. The approach is benchmarked with a motion-tracking system with sparse markers and a haptic device with dense measurements. Both results show state-of-the-art accuracies, with a median error of 1.96 mm for overall body deformation, corresponding to 2.1$\%$ of the finger's length. More importantly, the state estimation is robust in both on-land and underwater environments as we demonstrate its usage for underwater object shape sensing. This combination of passive adaptation and real-time tactile sensing paves the way for amphibious robotic grasping applications.


Autoencoding a Soft Touch to Learn Grasping from On-land to Underwater

arXiv.org Artificial Intelligence

Robots play a critical role as the physical agent of human operators in exploring the ocean. However, it remains challenging to grasp objects reliably while fully submerging under a highly pressurized aquatic environment with little visible light, mainly due to the fluidic interference on the tactile mechanics between the finger and object surfaces. This study investigates the transferability of grasping knowledge from on-land to underwater via a vision-based soft robotic finger that learns 6D forces and torques (FT) using a Supervised Variational Autoencoder (SVAE). A high-framerate camera captures the whole-body deformations while a soft robotic finger interacts with physical objects on-land and underwater. Results show that the trained SVAE model learned a series of latent representations of the soft mechanics transferrable from land to water, presenting a superior adaptation to the changing environments against commercial FT sensors. Soft, delicate, and reactive grasping enabled by tactile intelligence enhances the gripper's underwater interaction with improved reliability and robustness at a much-reduced cost, paving the path for learning-based intelligent grasping to support fundamental scientific discoveries in environmental and ocean research.


Intelligence-Endogenous Management Platform for Computing and Network Convergence

arXiv.org Artificial Intelligence

Massive emerging applications are driving demand for the ubiquitous deployment of computing power today. This trend not only spurs the recent popularity of the \emph{Computing and Network Convergence} (CNC), but also introduces an urgent need for the intelligentization of a management platform to coordinate changing resources and tasks in the CNC. Therefore, in this article, we present the concept of an intelligence-endogenous management platform for CNCs called \emph{CNC brain} based on artificial intelligence technologies. It aims at efficiently and automatically matching the supply and demand with high heterogeneity in a CNC via four key building blocks, i.e., perception, scheduling, adaptation, and governance, throughout the CNC's life cycle. Their functionalities, goals, and challenges are presented. To examine the effectiveness of the proposed concept and framework, we also implement a prototype for the CNC brain based on a deep reinforcement learning technology. Also, it is evaluated on a CNC testbed that integrates two open-source and popular frameworks (OpenFaas and Kubernetes) and a real-world business dataset provided by Microsoft Azure. The evaluation results prove the proposed method's effectiveness in terms of resource utilization and performance. Finally, we highlight the future research directions of the CNC brain.


Artificial Intelligence Security Competition (AISC)

arXiv.org Artificial Intelligence

The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.


Hard instance learning for quantum adiabatic prime factorization

arXiv.org Artificial Intelligence

Prime factorization is a difficult problem with classical computing, whose exponential hardness is the foundation of Rivest-Shamir-Adleman (RSA) cryptography. With programmable quantum devices, adiabatic quantum computing has been proposed as a plausible approach to solve prime factorization, having promising advantage over classical computing. Here, we find there are certain hard instances that are consistently intractable for both classical simulated annealing and un-configured adiabatic quantum computing (AQC). Aiming at an automated architecture for optimal configuration of quantum adiabatic factorization, we apply a deep reinforcement learning (RL) method to configure the AQC algorithm. By setting the success probability of the worst-case problem instances as the reward to RL, we show the AQC performance on the hard instances is dramatically improved by RL configuration. The success probability also becomes more evenly distributed over different problem instances, meaning the configured AQC is more stable as compared to the un-configured case. Through a technique of transfer learning, we find prominent evidence that the framework of AQC configuration is scalable -- the configured AQC as trained on five qubits remains working efficiently on nine qubits with a minimal amount of additional training cost.


Reinforcement learning architecture for automated quantum-adiabatic-algorithm design

arXiv.org Artificial Intelligence

Quantum algorithm design lies in the hallmark of applications of quantum computation and quantum simulation. Here we put forward a deep reinforcement learning (RL) architecture for automated algorithm design in the framework of quantum adiabatic algorithm, where the optimal Hamiltonian path to reach a quantum ground state that encodes a compution problem is obtained by RL techniques. We benchmark our approach in Grover search and 3-SAT problems, and find that the adiabatic algorithm obtained by our RL approach leads to significant improvement in the success probability and computing speedups for both moderate and large number of qubits compared to conventional algorithms. The RL-designed algorithm is found to be qualitatively distinct from the linear algorithm in the resultant distribution of success probability. Considering the established complexity-equivalence of circuit and adiabatic quantum algorithms, we expect the RL-designed adiabatic algorithm to inspire novel circuit algorithms as well. Our approach offers a recipe to design quantum algorithms for generic problems through a machinery RL process, which paves a novel way to automated quantum algorithm design using artificial intelligence, potentially applicable to different quantum simulation and computation platforms from trapped ions and optical lattices to superconducting-qubit devices.