Lin, Hsien-Chung
Harnessing with Twisting: Single-Arm Deformable Linear Object Manipulation for Industrial Harnessing Task
Zhang, Xiang, Lin, Hsien-Chung, Zhao, Yu, Tomizuka, Masayoshi
Wire-harnessing tasks pose great challenges to be automated by the robot due to the complex dynamics and unpredictable behavior of the deformable wire. Traditional methods, often reliant on dual-robot arms or tactile sensing, face limitations in adaptability, cost, and scalability. This paper introduces a novel single-robot wire-harnessing pipeline that leverages a robot's twisting motion to generate necessary wire tension for precise insertion into clamps, using only one robot arm with an integrated force/torque (F/T) sensor. Benefiting from this design, the single robot arm can efficiently apply tension for wire routing and insertion into clamps in a narrow space. Our approach is structured around four principal components: a Model Predictive Control (MPC) based on the Koopman operator for tension tracking and wire following, a motion planner for sequencing harnessing waypoints, a suite of insertion primitives for clamp engagement, and a fix-point switching mechanism for wire constraint updating. Evaluated on an industrial-level wire harnessing task, our method demonstrated superior performance and reliability over conventional approaches, efficiently handling both single and multiple wire configurations with high success rates.
Learning from Local Experience: Informed Sampling Distributions for High Dimensional Motion Planning
Kobashi, Keita, Wang, Changhao, Zhao, Yu, Lin, Hsien-Chung, Tomizuka, Masayoshi
This paper presents a sampling-based motion planning framework that leverages the geometry of obstacles in a workspace as well as prior experiences from motion planning problems. Previous studies have demonstrated the benefits of utilizing prior solutions to motion planning problems for improving planning efficiency. However, particularly for high-dimensional systems, achieving high performance across randomized environments remains a technical challenge for experience-based approaches due to the substantial variance between each query. To address this challenge, we propose a novel approach that involves decoupling the problem into subproblems through algorithmic workspace decomposition and graph search. Additionally, we capitalize on prior experience within each subproblem. This approach effectively reduces the variance across different problems, leading to improved performance for experience-based planners. To validate the effectiveness of our framework, we conduct experiments using 2D and 6D robotic systems. The experimental results demonstrate that our framework outperforms existing algorithms in terms of planning time and cost.
A Learning Framework for Robust Bin Picking by Customized Grippers
Fan, Yongxiang, Lin, Hsien-Chung, Tang, Te, Tomizuka, Masayoshi
Abstract-- Customized grippers have specifically designed fingers to increase the contact area with the workpieces and improve the grasp robustness. However, grasp planning for customized grippers is challenging due to the object variations, surface contacts and structural constraints of the grippers. In this paper, we propose a learning framework to plan robust grasps for customized grippers in real-time. The learning framework contains a low-level optimization-based planner to search for optimal grasps locally under object shape variations, and a high-level learning-based explorer to learn the grasp exploration based on previous grasp experience. The optimization-based planner uses an iterative surface fitting (ISF) to simultaneously search for optimal gripper transformation and finger displacement by minimizing the surface fitting error. The high-level learning-based explorer trains a regionbased convolutional neural network (R-CNN) to propose good optimization regions, which avoids ISF getting stuck in bad local optima and improves the collision avoidance performance. The proposed learning framework with RCNN-ISF is able to consider the structural constraints of the gripper, learn grasp exploration strategy from previous experience, and plan optimal grasps in clutter environment in real-time. The effectiveness of the algorithm is verified by experiments. Customized grippers have been broadly applied in industry to execute complex tasks such as assembly and packaging.