Lin, Hezheng
QARM: Quantitative Alignment Multi-Modal Recommendation at Kuaishou
Luo, Xinchen, Cao, Jiangxia, Sun, Tianyu, Yu, Jinkai, Huang, Rui, Yuan, Wei, Lin, Hezheng, Zheng, Yichen, Wang, Shiyao, Hu, Qigen, Qiu, Changqing, Zhang, Jiaqi, Zhang, Xu, Yan, Zhiheng, Zhang, Jingming, Zhang, Simin, Wen, Mingxing, Liu, Zhaojie, Gai, Kun, Zhou, Guorui
In recent years, with the significant evolution of multi-modal large models, many recommender researchers realized the potential of multi-modal information for user interest modeling. In industry, a wide-used modeling architecture is a cascading paradigm: (1) first pre-training a multi-modal model to provide omnipotent representations for downstream services; (2) The downstream recommendation model takes the multi-modal representation as additional input to fit real user-item behaviours. Although such paradigm achieves remarkable improvements, however, there still exist two problems that limit model performance: (1) Representation Unmatching: The pre-trained multi-modal model is always supervised by the classic NLP/CV tasks, while the recommendation models are supervised by real user-item interaction. As a result, the two fundamentally different tasks' goals were relatively separate, and there was a lack of consistent objective on their representations; (2) Representation Unlearning: The generated multi-modal representations are always stored in cache store and serve as extra fixed input of recommendation model, thus could not be updated by recommendation model gradient, further unfriendly for downstream training. Inspired by the two difficulties challenges in downstream tasks usage, we introduce a quantitative multi-modal framework to customize the specialized and trainable multi-modal information for different downstream models.
Dreaming User Multimodal Representation Guided by The Platonic Representation Hypothesis for Micro-Video Recommendation
Lin, Chengzhi, Lin, Hezheng, Liu, Shuchang, Ruan, Cangguang, Xu, LingJing, Yang, Dezhao, Wang, Chuyuan, Liu, Yongqi
The proliferation of online micro-video platforms has underscored the necessity for advanced recommender systems to mitigate information overload and deliver tailored content. Despite advancements, accurately and promptly capturing dynamic user interests remains a formidable challenge. Inspired by the Platonic Representation Hypothesis, which posits that different data modalities converge towards a shared statistical model of reality, we introduce DreamUMM (Dreaming User Multi-Modal Representation), a novel approach leveraging user historical behaviors to create real-time user representation in a multimoda space. DreamUMM employs a closed-form solution correlating user video preferences with multimodal similarity, hypothesizing that user interests can be effectively represented in a unified multimodal space. Additionally, we propose Candidate-DreamUMM for scenarios lacking recent user behavior data, inferring interests from candidate videos alone. Extensive online A/B tests demonstrate significant improvements in user engagement metrics, including active days and play count. The successful deployment of DreamUMM in two micro-video platforms with hundreds of millions of daily active users, illustrates its practical efficacy and scalability in personalized micro-video content delivery. Our work contributes to the ongoing exploration of representational convergence by providing empirical evidence supporting the potential for user interest representations to reside in a multimodal space.
CAT: Cross Attention in Vision Transformer
Lin, Hezheng, Cheng, Xing, Wu, Xiangyu, Yang, Fan, Shen, Dong, Wang, Zhongyuan, Song, Qing, Yuan, Wei
Since Transformer has found widespread use in NLP, the potential of Transformer in CV has been realized and has inspired many new approaches. However, the computation required for replacing word tokens with image patches for Transformer after the tokenization of the image is vast(e.g., ViT), which bottlenecks model training and inference. In this paper, we propose a new attention mechanism in Transformer termed Cross Attention, which alternates attention inner the image patch instead of the whole image to capture local information and apply attention between image patches which are divided from single-channel feature maps to capture global information. Both operations have less computation than standard self-attention in Transformer. By alternately applying attention inner patch and between patches, we implement cross attention to maintain the performance with lower computational cost and build a hierarchical network called Cross Attention Transformer(CAT) for other vision tasks. Our base model achieves state-of-the-arts on ImageNet-1K, and improves the performance of other methods on COCO and ADE20K, illustrating that our network has the potential to serve as general backbones.