Goto

Collaborating Authors

 Lin, Hangyu


Rope to Nope and Back Again: A New Hybrid Attention Strategy

arXiv.org Artificial Intelligence

Long-context large language models (LLMs) have achieved remarkable advancements, driven by techniques like Rotary Position Embedding (RoPE) (Su et al., 2023) and its extensions (Chen et al., 2023; Liu et al., 2024c; Peng et al., 2023). By adjusting RoPE parameters and incorporating training data with extended contexts, we can train performant models with considerably longer input sequences. However, existing RoPE-based methods exhibit performance limitations when applied to extended context lengths. This paper presents a comprehensive analysis of various attention mechanisms, including RoPE, No Positional Embedding (NoPE), and Query-Key Normalization (QK-Norm), identifying their strengths and shortcomings in long-context modeling. Our investigation identifies distinctive attention patterns in these methods and highlights their impact on long-context performance, providing valuable insights for architectural design. Building on these findings, we propose a novel architectural based on a hybrid attention mechanism that not only surpasses conventional RoPE-based transformer models in long context tasks but also achieves competitive performance on benchmarks requiring shorter context lengths.


Aya Expanse: Combining Research Breakthroughs for a New Multilingual Frontier

arXiv.org Artificial Intelligence

We introduce the Aya Expanse model family, a new generation of 8B and 32B parameter multilingual language models, aiming to address the critical challenge of developing highly performant multilingual models that match or surpass the capabilities of monolingual models. By leveraging several years of research at Cohere For AI and Cohere, including advancements in data arbitrage, multilingual preference training, and model merging, Aya Expanse sets a new state-of-the-art in multilingual performance. Our evaluations on the Arena-Hard-Auto dataset, translated into 23 languages, demonstrate that Aya Expanse 8B and 32B outperform leading open-weight models in their respective parameter classes, including Gemma 2, Qwen 2.5, and Llama 3.1, achieving up to a 76.6% win-rate. Notably, Aya Expanse 32B outperforms Llama 3.1 70B, a model with twice as many parameters, achieving a 54.0% win-rate. In this short technical report, we present extended evaluation results for the Aya Expanse model family and release their open-weights, together with a new multilingual evaluation dataset m-ArenaHard.


Aya 23: Open Weight Releases to Further Multilingual Progress

arXiv.org Artificial Intelligence

This technical report introduces Aya 23, a family of multilingual language models. Aya 23 builds on the recent release of the Aya model (\"Ust\"un et al., 2024), focusing on pairing a highly performant pre-trained model with the recently released Aya collection (Singh et al., 2024). The result is a powerful multilingual large language model serving 23 languages, expanding state-of-art language modeling capabilities to approximately half of the world's population. The Aya model covered 101 languages whereas Aya 23 is an experiment in depth vs breadth, exploring the impact of allocating more capacity to fewer languages that are included during pre-training. Aya 23 outperforms both previous massively multilingual models like Aya 101 for the languages it covers, as well as widely used models like Gemma, Mistral and Mixtral on an extensive range of discriminative and generative tasks. We release the open weights for both the 8B and 35B models as part of our continued commitment for expanding access to multilingual progress.


A Generalization Theory of Cross-Modality Distillation with Contrastive Learning

arXiv.org Artificial Intelligence

Cross-modality distillation arises as an important topic for data modalities containing limited knowledge such as depth maps and high-quality sketches. Such techniques are of great importance, especially for memory and privacy-restricted scenarios where labeled training data is generally unavailable. To solve the problem, existing label-free methods leverage a few pairwise unlabeled data to distill the knowledge by aligning features or statistics between the source and target modalities. For instance, one typically aims to minimize the L2 distance or contrastive loss between the learned features of pairs of samples in the source (e.g. image) and the target (e.g. sketch) modalities. However, most algorithms in this domain only focus on the experimental results but lack theoretical insight. To bridge the gap between the theory and practical method of cross-modality distillation, we first formulate a general framework of cross-modality contrastive distillation (CMCD), built upon contrastive learning that leverages both positive and negative correspondence, towards a better distillation of generalizable features. Furthermore, we establish a thorough convergence analysis that reveals that the distance between source and target modalities significantly impacts the test error on downstream tasks within the target modality which is also validated by the empirical results. Extensive experimental results show that our algorithm outperforms existing algorithms consistently by a margin of 2-3\% across diverse modalities and tasks, covering modalities of image, sketch, depth map, and audio and tasks of recognition and segmentation.


Mitigating the Alignment Tax of RLHF

arXiv.org Artificial Intelligence

LLMs acquire a wide range of abilities during pre-training, but aligning LLMs under Reinforcement Learning with Human Feedback (RLHF) can lead to forgetting, which is also known as the alignment tax. To empirically verify this hypothesis, we conducted experiments with existing RLHF algorithms using OpenLLaMA-3B, which revealed a pronounced alignment tax in NLP tasks. On the other hand, despite various techniques to mitigate forgetting, they are often at odds with the RLHF performance, leading to a trade-off between reward maximization and forgetting mitigation. In light of the above pressing issue in aligning LLMs, in this paper we explore model averaging, which interpolates between pre and post RLHF model weights, to achieve a more efficient reward-tax Pareto front. To understand its effectiveness, We offer theoretical insights into model averaging, revealing that it enhances performance Pareto front by increasing feature diversity on the layers where tasks share overlapped feature spaces. Empirical evidence corroborates our analysis by showing the benefits of averaging low-level transformer layers. Building on the analysis and the observation that averaging different layers of the transformer leads to significantly different reward-tax trade-offs, we propose Adaptive Model Averaging (AMA) to adaptively find various combination ratios of model layers. AMA seeks to maximize the alignment reward while incurring minimal alignment tax. Moreover, we validate AMA's performance across a range of RLHF algorithms over OpenLLaMA-3B and further extend our findings to Mistral-7B.


Sketch-BERT: Learning Sketch Bidirectional Encoder Representation from Transformers by Self-supervised Learning of Sketch Gestalt

arXiv.org Machine Learning

Previous researches of sketches often considered sketches in pixel format and leveraged CNN based models in the sketch understanding. Fundamentally, a sketch is stored as a sequence of data points, a vector format representation, rather than the photo-realistic image of pixels. SketchRNN studied a generative neural representation for sketches of vector format by Long Short Term Memory networks (LSTM). Unfortunately, the representation learned by SketchRNN is primarily for the generation tasks, rather than the other tasks of recognition and retrieval of sketches. To this end and inspired by the recent BERT model, we present a model of learning Sketch Bidirectional Encoder Representation from Transformer (Sketch-BERT). We generalize BERT to sketch domain, with the novel proposed components and pre-training algorithms, including the newly designed sketch embedding networks, and the self-supervised learning of sketch gestalt. Particularly, towards the pre-training task, we present a novel Sketch Gestalt Model (SGM) to help train the Sketch-BERT. Experimentally, we show that the learned representation of Sketch-BERT can help and improve the performance of the downstream tasks of sketch recognition, sketch retrieval, and sketch gestalt.


Verb Pattern: A Probabilistic Semantic Representation on Verbs

AAAI Conferences

Verbs are important in semantic understanding of natural language. Traditional verb representations, such as FrameNet, PropBank, VerbNet, focus on verbs' roles. These roles are too coarse to represent verbs' semantics. In this paper, we introduce verb patterns to represent verbs' semantics, such that each pattern corresponds to a single semantic of the verb. First we analyze the principles for verb patterns: generality and specificity. Then we propose a nonparametric model based on description length. Experimental results prove the high effectiveness of verb patterns. We further apply verb patterns to context-aware conceptualization, to show that verb patterns are helpful in semantic-related tasks.