Goto

Collaborating Authors

 Lin, Fen


Hierarchical Neural Network for Extracting Knowledgeable Snippets and Documents

arXiv.org Artificial Intelligence

In this study, we focus on extracting knowledgeable snippets and annotating knowledgeable documents from Web corpus, consisting of the documents from social media and We-media. Informally, knowledgeable snippets refer to the text describing concepts, properties of entities, or relations among entities, while knowledgeable documents are the ones with enough knowledgeable snippets. These knowledgeable snippets and documents could be helpful in multiple applications, such as knowledge base construction and knowledge-oriented service. Previous studies extracted the knowledgeable snippets using the pattern-based method. Here, we propose the semantic-based method for this task. Specifically, a CNN based model is developed to extract knowledgeable snippets and annotate knowledgeable documents simultaneously. Additionally, a "low-level sharing, high-level splitting" structure of CNN is designed to handle the documents from different content domains. Compared with building multiple domain-specific CNNs, this joint model not only critically saves the training time, but also improves the prediction accuracy visibly. The superiority of the proposed method is demonstrated in a real dataset from Wechat public platform.


Incorporating Chinese Characters of Words for Lexical Sememe Prediction

arXiv.org Artificial Intelligence

Sememes are minimum semantic units of concepts in human languages, such that each word sense is composed of one or multiple sememes. Words are usually manually annotated with their sememes by linguists, and form linguistic common-sense knowledge bases widely used in various NLP tasks. Recently, the lexical sememe prediction task has been introduced. It consists of automatically recommending sememes for words, which is expected to improve annotation efficiency and consistency. However, existing methods of lexical sememe prediction typically rely on the external context of words to represent the meaning, which usually fails to deal with low-frequency and out-of-vocabulary words. To address this issue for Chinese, we propose a novel framework to take advantage of both internal character information and external context information of words. We experiment on HowNet, a Chinese sememe knowledge base, and demonstrate that our framework outperforms state-of-the-art baselines by a large margin, and maintains a robust performance even for low-frequency words.


Elastic Responding Machine for Dialog Generation with Dynamically Mechanism Selecting

AAAI Conferences

Neural models aiming at generating meaningful and diverse response is attracting increasing attention over recent years. For a given post, the conventional encoder-decoder models tend to learn high-frequency but trivial responses, or are difficult to determine which speaking styles are suitable to generate responses. To address this issue, we propose the elastic responding machine (ERM), which is based on a proposed encoder-diverter-filter-decoder framework. ERM models the multiple responding mechanisms to not only generate acceptable responses for a given post but also improve the diversity of responses. Here, the mechanisms could be regraded as some latent variables, and for a given post different responses may be generated by different mechanisms. The experiments demonstrate the quality and diversity of the generated responses, intuitively show how the learned model controls response mechanism when responding, and reveal some underlying relationship between mechanism and language style.


Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

AAAI Conferences

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.


Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning With Confidence

AAAI Conferences

Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.


Conversational Model Adaptation via KL Divergence Regularization

AAAI Conferences

In this study we formulate the problem of conversational model adaptation, where we aim to build a generative conversational model for a target domain based on a limited amount of dialogue data from this target domain and some existing dialogue models from related source domains. This model facilitates the fast building of a chatbot platform, where a new vertical chatbot with only a small number of conversation data can be supported by other related mature chatbots. Previous studies on model adaptation and transfer learning mostly focus on classification and recommendation problems, however, how these models work for conversation generation are still unexplored. To this end, we leverage a KL divergence (KLD) regularization to adapt the existing conversational models. Specifically, it employs the KLD to measure the distance between source and target domain. Adding KLD as a regularization to the objective function allows the proposed method to utilize the information from source domains effectively. We also evaluate the performance of this adaptation model for the online chatbots in Wechat platform of public accounts using both the BLEU metric and human judgement. The experiments empirically show that the proposed method visibly improves these evaluation metrics.


Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

arXiv.org Artificial Intelligence

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.


Mechanism-Aware Neural Machine for Dialogue Response Generation

AAAI Conferences

To the same utterance, people's responses in everyday dialogue may be diverse largely in terms of content semantics, speaking styles, communication intentions and so on. Previous generative conversational models ignore these 1-to-n relationships between a post to its diverse responses, and tend to return high-frequency but meaningless responses. In this study we propose a mechanism-aware neural machine for dialogue response generation. It assumes that there exists some latent responding mechanisms, each of which can generate different responses for a single input post. With this assumption we model different responding mechanisms as latent embeddings, and develop a encoder-diverter-decoder framework to train its modules in an end-to-end fashion. With the learned latent mechanisms, for the first time these decomposed modules can be used to encode the input into mechanism-aware context, and decode the responses with the controlled generation styles and topics. Finally, the experiments with human judgements, intuitive examples, detailed discussions demonstrate the quality and diversity of the generated responses with 9.80% increase of acceptable ratio over the best of six baseline methods.