Goto

Collaborating Authors

 Lin, Eric


Know Thy Judge: On the Robustness Meta-Evaluation of LLM Safety Judges

arXiv.org Artificial Intelligence

Large Language Model (LLM) based judges form the underpinnings of key safety evaluation processes such as offline benchmarking, automated red-teaming, and online guardrailing. This widespread requirement raises the crucial question: can we trust the evaluations of these evaluators? In this paper, we highlight two critical challenges that are typically overlooked: (i) evaluations in the wild where factors like prompt sensitivity and distribution shifts can affect performance and (ii) adversarial attacks that target the judge. We highlight the importance of these through a study of commonly used safety judges, showing that small changes such as the style of the model output can lead to jumps of up to 0.24 in the false negative rate on the same dataset, whereas adversarial attacks on the model generation can fool some judges into misclassifying 100% of harmful generations as safe ones. These findings reveal gaps in commonly used meta-evaluation benchmarks and weaknesses in the robustness of current LLM judges, indicating that low attack success under certain judges could create a false sense of security. Well-known jailbreak attacks on widely used Large Language Models (LLMs) such as ChatGPT have raised concerns about the robustness of these systems to safety violations. As a result, organizations deploying them typically rely on a two-pronged approach to safety: 1) offline benchmarking and red-teaming (Mazeika et al., 2024; Perez et al., 2022; Ganguli et al., 2022), and 2) online guardrails designed to minimize the risk from attacks (Mu et al., 2024; Manczak et al., 2024; Neill et al., 2024).


Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone

arXiv.org Artificial Intelligence

We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered publicly available web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench). Moreover, we also introduce phi-3-vision, a 4.2 billion parameter model based on phi-3-mini with strong reasoning capabilities for image and text prompts.


oneDNN Graph Compiler: A Hybrid Approach for High-Performance Deep Learning Compilation

arXiv.org Artificial Intelligence

With the rapid development of deep learning models and hardware support for dense computing, the deep learning workload characteristics changed significantly from a few hot spots on compute-intensive operations to a broad range of operations scattered across the models. Accelerating a few compute-intensive operations using the expert-tuned implementation of primitives does not fully exploit the performance potential of AI hardware. Various efforts have been made to compile a full deep neural network (DNN) graph. One of the biggest challenges is to achieve high-performance tensor compilation by generating expert level performance code for the dense compute-intensive operations and applying compilation optimization at the scope of DNN computation graph across multiple compute-intensive operations. We present oneDNN Graph Compiler, a tensor compiler that employs a hybrid approach of using techniques from both compiler optimization and expert-tuned kernels for high performance code generation of the deep neural network graph. oneDNN Graph Compiler addresses unique optimization challenges in the deep learning domain, such as low-precision computation, aggressive fusion of graph operations, optimization for static tensor shapes and memory layout, constant weight optimization, and memory buffer reuse. Experimental results demonstrate significant performance gains over existing tensor compiler and primitives library for performance-critical DNN computation graphs and end-to-end models on Intel Xeon Scalable Processors.


Does fine-tuning GPT-3 with the OpenAI API leak personally-identifiable information?

arXiv.org Artificial Intelligence

Machine learning practitioners often fine-tune generative pre-trained models like GPT-3 to improve model performance at specific tasks. Previous works, however, suggest that fine-tuned machine learning models memorize and emit sensitive information from the original fine-tuning dataset. Companies such as OpenAI offer fine-tuning services for their models, but no prior work has conducted a memorization attack on any closed-source models. In this work, we simulate a privacy attack on GPT-3 using OpenAI's fine-tuning API. Our objective is to determine if personally identifiable information (PII) can be extracted from this model. We (1) explore the use of naive prompting methods on a GPT-3 fine-tuned classification model, and (2) we design a practical word generation task called Autocomplete to investigate the extent of PII memorization in fine-tuned GPT-3 within a real-world context. Our findings reveal that fine-tuning GPT3 for both tasks led to the model memorizing and disclosing critical personally identifiable information (PII) obtained from the underlying fine-tuning dataset. To encourage further research, we have made our codes and datasets publicly available on GitHub at: https://github.com/albertsun1/gpt3-pii-attacks


FedCD: Improving Performance in non-IID Federated Learning

arXiv.org Machine Learning

Federated learning has been widely applied to enable decentralized devices, which each have their own local data, to learn a shared model. However, learning from real-world data can be challenging, as it is rarely identically and independently distributed (IID) across edge devices (a key assumption for current high-performing and low-bandwidth algorithms). We present a novel approach, FedCD, which clones and deletes models to dynamically group devices with similar data. Experiments on the CIFAR-10 dataset show that FedCD achieves higher accuracy and faster convergence compared to a FedAvg baseline on non-IID data while incurring minimal computation, communication, and storage overheads.


FedFMC: Sequential Efficient Federated Learning on Non-iid Data

arXiv.org Machine Learning

Over the past decade, improvements in machine learning accuracy has met rising consumer demand for use of learning models. Models were shown to be successful in a plethora of learning tasks, ranging from prediction-based recommendation to a variety of image processing tasks. Standard machine learning applications flourished in optimized processes where data would flow from user devices to centralized data centers for analysis. However, the rise of mobile and IoT (internet-of-things) devices has come with a changing dynamic resulting in new needs and constraints for machine learning. These include: (1) tighter restrictions [1] on usage of data in relation to user privacy, (2) demand for lower latency in many applications such as remote surgery, and (3) constraints of poor internet connectivity for accessibility in underdeveloped countries and offsite rigs (for research or oil exploration).