Lin, Ching-Yung
One-Class Conditional Random Fields for Sequential Anomaly Detection
Song, Yale (Massachusetts Institute of Technology) | Wen, Zhen (IBM T.J. Watson Research Center) | Lin, Ching-Yung (IBM T. J. Watson Research Center) | Davis, Randall (Massachusetts Institute of Technology)
Sequential anomaly detection is a challenging problem due to the one-class nature of the data (i.e., data is collected from only one class) and the temporal dependence in sequential data. We present One-Class Conditional Random Fields (OCCRF) for sequential anomaly detection that learn from a one-class dataset and capture the temporal dependence structure, in an unsupervised fashion. We propose a hinge loss in a regularized risk minimization framework that maximizes the margin between each sequence being classified as "normal" and "abnormal." This allows our model to accept most (but not all) of the training data as normal, yet keeps the solution space tight. Experimental results on a number of real-world datasets show our model outperforming several baselines. We also report an exploratory study on detecting abnormal organizational behavior in enterprise social networks.
Towards Evolutionary Nonnegative Matrix Factorization
Wang, Fei (IBM Research) | Tong, Hanghang (IBM Research) | Lin, Ching-Yung (IBM Research)
Nonnegative Matrix Factorization (NMF) techniques has aroused considerable interests from the field of artificial intelligence in recent years because of its good interpretability and computational efficiency. However, in many real world applications, the data features usually evolve over time smoothly. In this case, it would be very expensive in both computation and storage to rerun the whole NMF procedure after each time when the data feature changing. In this paper, we propose Evolutionary Nonnegative Matrix Factorization (eNMF), which aims to incrementally update the factorized matrices in a computation and space efficient manner with the variation of the data matrix. We devise such evolutionary procedure for both asymmetric and symmetric NMF. Finally we conduct experiments on several real world data sets to demonstrate the efficacy and efficiency of eNMF.