Goto

Collaborating Authors

 Lin, Allen


Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap

arXiv.org Artificial Intelligence

Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.


Countering Mainstream Bias via End-to-End Adaptive Local Learning

arXiv.org Artificial Intelligence

Collaborative filtering (CF) based recommendations suffer from mainstream bias -- where mainstream users are favored over niche users, leading to poor recommendation quality for many long-tail users. In this paper, we identify two root causes of this mainstream bias: (i) discrepancy modeling, whereby CF algorithms focus on modeling mainstream users while neglecting niche users with unique preferences; and (ii) unsynchronized learning, where niche users require more training epochs than mainstream users to reach peak performance. Targeting these causes, we propose a novel end-To-end Adaptive Local Learning (TALL) framework to provide high-quality recommendations to both mainstream and niche users. TALL uses a loss-driven Mixture-of-Experts module to adaptively ensemble experts to provide customized local models for different users. Further, it contains an adaptive weight module to synchronize the learning paces of different users by dynamically adjusting weights in the loss. Extensive experiments demonstrate the state-of-the-art performance of the proposed model. Code and data are provided at \url{https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-}