Lie, Han Cheng
Data subsampling for Poisson regression with pth-root-link
Lie, Han Cheng, Munteanu, Alexander
We develop and analyze data subsampling techniques for Poisson regression, the standard model for count data $y\in\mathbb{N}$. In particular, we consider the Poisson generalized linear model with ID- and square root-link functions. We consider the method of coresets, which are small weighted subsets that approximate the loss function of Poisson regression up to a factor of $1\pm\varepsilon$. We show $\Omega(n)$ lower bounds against coresets for Poisson regression that continue to hold against arbitrary data reduction techniques up to logarithmic factors. By introducing a novel complexity parameter and a domain shifting approach, we show that sublinear coresets with $1\pm\varepsilon$ approximation guarantee exist when the complexity parameter is small. In particular, the dependence on the number of input points can be reduced to polylogarithmic. We show that the dependence on other input parameters can also be bounded sublinearly, though not always logarithmically. In particular, we show that the square root-link admits an $O(\log(y_{\max}))$ dependence, where $y_{\max}$ denotes the largest count presented in the data, while the ID-link requires a $\Theta(\sqrt{y_{\max}/\log(y_{\max})})$ dependence. As an auxiliary result for proving the tightness of the bound with respect to $y_{\max}$ in the case of the ID-link, we show an improved bound on the principal branch of the Lambert $W_0$ function, which may be of independent interest. We further show the limitations of our analysis when $p$th degree root-link functions for $p\geq 3$ are considered, which indicate that other analytical or computational methods would be required if such a generalization is even possible.
Implicit Probabilistic Integrators for ODEs
Teymur, Onur, Lie, Han Cheng, Sullivan, Tim, Calderhead, Ben
We introduce a family of implicit probabilistic integrators for initial value problems (IVPs), taking as a starting point the multistep Adams-Moulton method. The implicit construction allows for dynamic feedback from the forthcoming timestep, in contrast to previous probabilistic integrators, all of which are based on explicit methods. We begin with a concise survey of the rapidly-expanding field of probabilistic ODE solvers. We then introduce our method, which builds on and adapts the work of Conrad et al. (2016) and Teymur et al. (2016), and provide a rigorous proof of its well-definedness and convergence. We discuss the problem of the calibration of such integrators and suggest one approach. We give an illustrative example highlighting the effect of the use of probabilistic integrators--including our new method--in the setting of parameter inference within an inverse problem.
Implicit Probabilistic Integrators for ODEs
Teymur, Onur, Lie, Han Cheng, Sullivan, Tim, Calderhead, Ben
We introduce a family of implicit probabilistic integrators for initial value problems (IVPs), taking as a starting point the multistep Adams-Moulton method. The implicit construction allows for dynamic feedback from the forthcoming timestep, incontrast to previous probabilistic integrators, all of which are based on explicit methods. We begin with a concise survey of the rapidly-expanding field of probabilistic ODE solvers. We then introduce our method, which builds on and adapts the work of Conrad et al. (2016) and Teymur et al. (2016), and provide a rigorous proof of its well-definedness and convergence. We discuss the problem of the calibration of such integrators and suggest one approach. We give an illustrative example highlighting the effect of the use of probabilistic integrators--including our new method--in the setting of parameter inference within an inverse problem.