Goto

Collaborating Authors

 Liberty, Edo


Results of the Big ANN: NeurIPS'23 competition

arXiv.org Artificial Intelligence

The 2023 Big ANN Challenge, held at NeurIPS 2023, focused on advancing the state-of-the-art in indexing data structures and search algorithms for practical variants of Approximate Nearest Neighbor (ANN) search that reflect the growing complexity and diversity of workloads. Unlike prior challenges that emphasized scaling up classical ANN search ~\cite{DBLP:conf/nips/SimhadriWADBBCH21}, this competition addressed filtered search, out-of-distribution data, sparse and streaming variants of ANNS. Participants developed and submitted innovative solutions that were evaluated on new standard datasets with constrained computational resources. The results showcased significant improvements in search accuracy and efficiency over industry-standard baselines, with notable contributions from both academic and industrial teams. This paper summarizes the competition tracks, datasets, evaluation metrics, and the innovative approaches of the top-performing submissions, providing insights into the current advancements and future directions in the field of approximate nearest neighbor search.


Asymmetric Random Projections

arXiv.org Machine Learning

Random projections (RP) are a popular tool for reducing dimensionality while preserving local geometry. In many applications the data set to be projected is given to us in advance, yet the current RP techniques do not make use of information about the data. In this paper, we provide a computationally light way to extract statistics from the data that allows designing a data dependent RP with superior performance compared to data-oblivious RP. We tackle scenarios such as matrix multiplication and linear regression/classification in which we wish to estimate inner products between pairs of vectors from two possibly different sources. Our technique takes advantage of the difference between the sources and is provably superior to oblivious RPs. Additionally, we provide extensive experiments comparing RPs with our approach showing significant performance lifts in fast matrix multiplication, regression and classification problems.


Discrepancy, Coresets, and Sketches in Machine Learning

arXiv.org Machine Learning

This paper defines the notion of class discrepancy for families of functions. It shows that low discrepancy classes admit small offline and streaming coresets. We provide general techniques for bounding the class discrepancy of machine learning problems. As corollaries of the general technique we bound the discrepancy (and therefore coreset complexity) of logistic regression, sigmoid activation loss, matrix covariance, kernel density and any analytic function of the dot product or the squared distance. Our results prove the existence of epsilon-approximation O(sqrt{d}/epsilon) sized coresets for the above problems. This resolves the long-standing open problem regarding the coreset complexity of Gaussian kernel density estimation. We provide two more related but independent results. First, an exponential improvement of the widely used merge-and-reduce trick which gives improved streaming sketches for any low discrepancy problem. Second, an extremely simple deterministic algorithm for finding low discrepancy sequences (and therefore coresets) for any positive semi-definite kernel. This paper establishes some explicit connections between class discrepancy, coreset complexity, learnability, and streaming algorithms.


ProxQuant: Quantized Neural Networks via Proximal Operators

arXiv.org Machine Learning

To make deep neural networks feasible in resource-constrained environments (such as mobile devices), it is beneficial to quantize models by using low-precision weights. One common technique for quantizing neural networks is the straight-through gradient method, which enables back-propagation through the quantization mapping. Despite its empirical success, little is understood about why the straight-through gradient method works. Building upon a novel observation that the straight-through gradient method is in fact identical to the well-known Nesterov's dual-averaging algorithm on a quantization constrained optimization problem, we propose a more principled alternative approach, called ProxQuant, that formulates quantized network training as a regularized learning problem instead and optimizes it via the prox-gradient method. ProxQuant does back-propagation on the underlying full-precision vector and applies an efficient prox-operator in between stochastic gradient steps to encourage quantizedness. For quantizing ResNets and LSTMs, ProxQuant outperforms state-of-the-art results on binary quantization and is on par with state-of-the-art on multi-bit quantization. For binary quantization, our analysis shows both theoretically and experimentally that ProxQuant is more stable than the straight-through gradient method (i.e. BinaryConnect), challenging the indispensability of the straight-through gradient method and providing a powerful alternative.


Near-Optimal Entrywise Sampling for Data Matrices

Neural Information Processing Systems

We consider the problem of independently sampling $s$ non-zero entries of a matrix $A$ in order to produce a sparse sketch of it, $B$, that minimizes $\|A-B\|_2$. For large $m \times n$ matrices, such that $n \gg m$ (for example, representing $n$ observations over $m$ attributes) we give distributions exhibiting four important properties. First, they have closed forms for the probability of sampling each item which are computable from minimal information regarding $A$. Second, they allow sketching of matrices whose non-zeros are presented to the algorithm in arbitrary order as a stream, with $O(1)$ computation per non-zero. Third, the resulting sketch matrices are not only sparse, but their non-zero entries are highly compressible. Lastly, and most importantly, under mild assumptions, our distributions are provably competitive with the optimal offline distribution. Note that the probabilities in the optimal offline distribution may be complex functions of all the entries in the matrix. Therefore, regardless of computational complexity, the optimal distribution might be impossible to compute in the streaming model.


Near-Optimal Entrywise Sampling for Data Matrices

arXiv.org Machine Learning

We consider the problem of selecting non-zero entries of a matrix $A$ in order to produce a sparse sketch of it, $B$, that minimizes $\|A-B\|_2$. For large $m \times n$ matrices, such that $n \gg m$ (for example, representing $n$ observations over $m$ attributes) we give sampling distributions that exhibit four important properties. First, they have closed forms computable from minimal information regarding $A$. Second, they allow sketching of matrices whose non-zeros are presented to the algorithm in arbitrary order as a stream, with $O(1)$ computation per non-zero. Third, the resulting sketch matrices are not only sparse, but their non-zero entries are highly compressible. Lastly, and most importantly, under mild assumptions, our distributions are provably competitive with the optimal offline distribution. Note that the probabilities in the optimal offline distribution may be complex functions of all the entries in the matrix. Therefore, regardless of computational complexity, the optimal distribution might be impossible to compute in the streaming model.