Goto

Collaborating Authors

 Liang, Zhiding


QCS-ADME: Quantum Circuit Search for Drug Property Prediction with Imbalanced Data and Regression Adaptation

arXiv.org Artificial Intelligence

The biomedical field is beginning to explore the use of quantum machine learning (QML) for tasks traditionally handled by classical machine learning, especially in predicting ADME (absorption, distribution, metabolism, and excretion) properties, which are essential in drug evaluation. However, ADME tasks pose unique challenges for existing quantum computing systems (QCS) frameworks, as they involve both classification with unbalanced dataset and regression problems. These dual requirements make it necessary to adapt and refine current QCS frameworks to effectively address the complexities of ADME predictions. We propose a novel training-free scoring mechanism to evaluate QML circuit performance on imbalanced classification and regression tasks. Our mechanism demonstrates significant correlation between scoring metrics and test performance on imbalanced classification tasks. Additionally, we develop methods to quantify continuous similarity relationships between quantum states, enabling performance prediction for regression tasks. This represents the first comprehensive approach to searching and evaluating QCS circuits specifically for regression applications. Validation on representative ADME tasks-one imbalanced classification and one regression-demonstrates moderate positive correlation between our scoring metrics and circuit performance, significantly outperforming baseline scoring methods that show negligible correlation.


Qsco: A Quantum Scoring Module for Open-set Supervised Anomaly Detection

arXiv.org Artificial Intelligence

Open set anomaly detection (OSAD) is a crucial task that aims to identify abnormal patterns or behaviors in data sets, especially when the anomalies observed during training do not represent all possible classes of anomalies. The recent advances in quantum computing in handling complex data structures and improving machine learning models herald a paradigm shift in anomaly detection methodologies. This study proposes a Quantum Scoring Module (Qsco), embedding quantum variational circuits into neural networks to enhance the model's processing capabilities in handling uncertainty and unlabeled data. Extensive experiments conducted across eight real-world anomaly detection datasets demonstrate our model's superior performance in detecting anomalies across varied settings and reveal that integrating quantum simulators does not result in prohibitive time complexities.


Graph Learning for Parameter Prediction of Quantum Approximate Optimization Algorithm

arXiv.org Artificial Intelligence

In recent years, quantum computing has emerged as a transformative force in the field of combinatorial optimization, offering novel approaches to tackling complex problems that have long challenged classical computational methods. Among these, the Quantum Approximate Optimization Algorithm (QAOA) stands out for its potential to efficiently solve the Max-Cut problem, a quintessential example of combinatorial optimization. However, practical application faces challenges due to current limitations on quantum computational resource. Our work optimizes QAOA initialization, using Graph Neural Networks (GNN) as a warm-start technique. This sacrifices affordable computational resource on classical computer to reduce quantum computational resource overhead, enhancing QAOA's effectiveness. Experiments with various GNN architectures demonstrate the adaptability and stability of our framework, highlighting the synergy between quantum algorithms and machine learning. Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing and contributing to practical applications.


RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training

arXiv.org Artificial Intelligence

Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iteratively tunes ansatz parameters to approximate target state. VQSP is particularly apt for Noisy-Intermediate Scale Quantum (NISQ) machines due to its shorter circuits. However, achieving noise-robust parameter optimization still remains challenging. We present RobustState, a novel VQSP training methodology that combines high robustness with high training efficiency. The core idea involves utilizing measurement outcomes from real machines to perform back-propagation through classical simulators, thus incorporating real quantum noise into gradient calculations. RobustState serves as a versatile, plug-and-play technique applicable for training parameters from scratch or fine-tuning existing parameters to enhance fidelity on target machines. It is adaptable to various ansatzes at both gate and pulse levels and can even benefit other variational algorithms, such as variational unitary synthesis. Comprehensive evaluation of RobustState on state preparation tasks for 4 distinct quantum algorithms using 10 real quantum machines demonstrates a coherent error reduction of up to 7.1 $\times$ and state fidelity improvement of up to 96\% and 81\% for 4-Q and 5-Q states, respectively. On average, RobustState improves fidelity by 50\% and 72\% for 4-Q and 5-Q states compared to baseline approaches.


NAPA: Intermediate-level Variational Native-pulse Ansatz for Variational Quantum Algorithms

arXiv.org Artificial Intelligence

These authors contributed to the work equally and should be regarded as co-first authors. Abstract --V ariational quantum algorithms (VQAs) have demonstrated great potentials in the NISQ era. In the workflow of VQA, the parameters of ansatz are iteratively updated to approximate the desired quantum states. We have seen various efforts to draft better ansatz with less gates. Some works consider the physical meaning of the underlying circuits, while others adopt the ideas of neural architecture search (NAS) for ansatz generator . However, these designs do not exploit full advantages of VQA. Because most techniques are targeting gate ansatz, and the parameters are usually rotation angles of the gates. In quantum computers, the gate ansatz will eventually be transformed into control signals such as microwave pulses on transmons. And the control pulses need elaborate calibration to minimize the errors such as over-rotation and under-rotation. In the case of VQAs, this procedure will introduce redundancy, but the variational properties of VQAs can naturally handle problems of over-rotation and under-rotation by updating the amplitude and frequency parameters. Therefore, we propose NAPA, a native-pulse ansatz generator framework for VQAs. We generate native-pulse ansatz with trainable parameters for amplitudes and frequencies. In our proposed NAPA, we are tuning parametric pulses, which are natively supported on NISQ computers. Considering that parameter-shift rules do not hold for native-pulse ansatz, we need to deploy non-gradient optimizers. T o constrain the number of parameters sent to the optimizer, we adopt a progressive way to generate our native-pulse ansatz. Experiments are conducted on both simulators and quantum devices to validate our methods. When adopted on NISQ machines, NAPA obtained improved the performance with decreased latency by an average of 86%.


Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs

arXiv.org Artificial Intelligence

With the constant increase of the number of quantum bits (qubits) in the actual quantum computers, implementing and accelerating the prevalent deep learning on quantum computers are becoming possible. Along with this trend, there emerge quantum neural architectures based on different designs of quantum neurons. A fundamental question in quantum deep learning arises: what is the best quantum neural architecture? Inspired by the design of neural architectures for classical computing which typically employs multiple types of neurons, this paper makes the very first attempt to mix quantum neuron designs to build quantum neural architectures. We observe that the existing quantum neuron designs may be quite different but complementary, such as neurons from variation quantum circuits (VQC) and Quantumflow. More specifically, VQC can apply real-valued weights but suffer from being extended to multiple layers, while QuantumFlow can build a multi-layer network efficiently, but is limited to use binary weights. To take their respective advantages, we propose to mix them together and figure out a way to connect them seamlessly without additional costly measurement. We further investigate the design principles to mix quantum neurons, which can provide guidance for quantum neural architecture exploration in the future. Experimental results demonstrate that the identified quantum neural architectures with mixed quantum neurons can achieve 90.62% of accuracy on the MNIST dataset, compared with 52.77% and 69.92% on the VQC and QuantumFlow, respectively.