Liang, Zhichao
ColorDynamic: Generalizable, Scalable, Real-time, End-to-end Local Planner for Unstructured and Dynamic Environments
Xin, Jinghao, Liang, Zhichao, Zhang, Zihuan, Wang, Peng, Li, Ning
Deep Reinforcement Learning (DRL) has demonstrated potential in addressing robotic local planning problems, yet its efficacy remains constrained in highly unstructured and dynamic environments. To address these challenges, this study proposes the ColorDynamic framework. First, an end-to-end DRL formulation is established, which maps raw sensor data directly to control commands, thereby ensuring compatibility with unstructured environments. Under this formulation, a novel network, Transqer, is introduced. The Transqer enables online DRL learning from temporal transitions, substantially enhancing decision-making in dynamic scenarios. To facilitate scalable training of Transqer with diverse data, an efficient simulation platform E-Sparrow, along with a data augmentation technique leveraging symmetric invariance, are developed. Comparative evaluations against state-of-the-art methods, alongside assessments of generalizability, scalability, and real-time performance, were conducted to validate the effectiveness of ColorDynamic. Results indicate that our approach achieves a success rate exceeding 90% while exhibiting real-time capacity (1.2-1.3 ms per planning). Additionally, ablation studies were performed to corroborate the contributions of individual components. Building on this, the OkayPlan-ColorDynamic (OPCD) navigation system is presented, with simulated and real-world experiments demonstrating its superiority and applicability in complex scenarios. The codebase and experimental demonstrations have been open-sourced on our website to facilitate reproducibility and further research.
Uncovering cognitive taskonomy through transfer learning in masked autoencoder-based fMRI reconstruction
Qu, Youzhi, Xia, Junfeng, Jian, Xinyao, Li, Wendu, Peng, Kaining, Liang, Zhichao, Wu, Haiyan, Liu, Quanying
Data reconstruction is a widely used pre-training task to learn the generalized features for many downstream tasks. Although reconstruction tasks have been applied to neural signal completion and denoising, neural signal reconstruction is less studied. Here, we employ the masked autoencoder (MAE) model to reconstruct functional magnetic resonance imaging (fMRI) data, and utilize a transfer learning framework to obtain the cognitive taskonomy, a matrix to quantify the similarity between cognitive tasks. Our experimental results demonstrate that the MAE model effectively captures the temporal dynamics patterns and interactions within the brain regions, enabling robust cross-subject fMRI signal reconstruction. The cognitive taskonomy derived from the transfer learning framework reveals the relationships among cognitive tasks, highlighting subtask correlations within motor tasks and similarities between emotion, social, and gambling tasks. Our study suggests that the fMRI reconstruction with MAE model can uncover the latent representation and the obtained taskonomy offers guidance for selecting source tasks in neural decoding tasks for improving the decoding performance on target tasks.