Liang, Yixiong
Multi-task GLOH feature selection for human age estimation
Liang, Yixiong, Liu, Lingbo, Xu, Ying, Xiang, Yao, Zou, Beiji
In this paper, we propose a novel age estimation method based on GLOH feature descriptor and multi-task learning (MTL). The GLOH feature descriptor, one of the state-of-the-art feature descriptor, is used to capture the age-related local and spatial information of face image. As the exacted GLOH features are often redundant, MTL is designed to select the most informative feature bins for age estimation problem, while the corresponding weights are determined by ridge regression. This approach largely reduces the dimensions of feature, which can not only improve performance but also decrease the computational burden. Experiments on the public available FG-NET database show that the proposed method can achieve comparable performance over previous approaches while using much fewer features.
Feature Selection via Sparse Approximation for Face Recognition
Liang, Yixiong, Wang, Lei, Xiang, Yao, Zou, Beiji
Inspired by biological vision systems, the over-complete local features with huge cardinality are increasingly used for face recognition during the last decades. Accordingly, feature selection has become more and more important and plays a critical role for face data description and recognition. In this paper, we propose a trainable feature selection algorithm based on the regularized frame for face recognition. By enforcing a sparsity penalty term on the minimum squared error (MSE) criterion, we cast the feature selection problem into a combinatorial sparse approximation problem, which can be solved by greedy methods or convex relaxation methods. Moreover, based on the same frame, we propose a sparse Ho-Kashyap (HK) procedure to obtain simultaneously the optimal sparse solution and the corresponding margin vector of the MSE criterion. The proposed methods are used for selecting the most informative Gabor features of face images for recognition and the experimental results on benchmark face databases demonstrate the effectiveness of the proposed methods.