Liang, Yingbin
Theoretical Characterization of the Generalization Performance of Overfitted Meta-Learning
Ju, Peizhong, Liang, Yingbin, Shroff, Ness B.
Meta-learning has arisen as a successful method for improving training performance by training over many similar tasks, especially with deep neural networks (DNNs). However, the theoretical understanding of when and why overparameterized models such as DNNs can generalize well in meta-learning is still limited. As an initial step towards addressing this challenge, this paper studies the generalization performance of overfitted meta-learning under a linear regression model with Gaussian features. In contrast to a few recent studies along the same line, our framework allows the number of model parameters to be arbitrarily larger than the number of features in the ground truth signal, and hence naturally captures the overparameterized regime in practical deep meta-learning. We show that the overfitted min $\ell_2$-norm solution of model-agnostic meta-learning (MAML) can be beneficial, which is similar to the recent remarkable findings on ``benign overfitting'' and ``double descent'' phenomenon in the classical (single-task) linear regression. However, due to the uniqueness of meta-learning such as task-specific gradient descent inner training and the diversity/fluctuation of the ground-truth signals among training tasks, we find new and interesting properties that do not exist in single-task linear regression. We first provide a high-probability upper bound (under reasonable tightness) on the generalization error, where certain terms decrease when the number of features increases. Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large. Under this circumstance, we show that the overfitted min $\ell_2$-norm solution can achieve an even lower generalization error than the underparameterized solution.
Learning to Generalize Provably in Learning to Optimize
Yang, Junjie, Chen, Tianlong, Zhu, Mingkang, He, Fengxiang, Tao, Dacheng, Liang, Yingbin, Wang, Zhangyang
Learning to optimize (L2O) has gained increasing popularity, which automates the design of optimizers by data-driven approaches. However, current L2O methods often suffer from poor generalization performance in at least two folds: (i) applying the L2O-learned optimizer to unseen optimizees, in terms of lowering their loss function values (optimizer generalization, or ``generalizable learning of optimizers"); and (ii) the test performance of an optimizee (itself as a machine learning model), trained by the optimizer, in terms of the accuracy over unseen data (optimizee generalization, or ``learning to generalize"). While the optimizer generalization has been recently studied, the optimizee generalization (or learning to generalize) has not been rigorously studied in the L2O context, which is the aim of this paper. We first theoretically establish an implicit connection between the local entropy and the Hessian, and hence unify their roles in the handcrafted design of generalizable optimizers as equivalent metrics of the landscape flatness of loss functions. We then propose to incorporate these two metrics as flatness-aware regularizers into the L2O framework in order to meta-train optimizers to learn to generalize, and theoretically show that such generalization ability can be learned during the L2O meta-training process and then transformed to the optimizee loss function. Extensive experiments consistently validate the effectiveness of our proposals with substantially improved generalization on multiple sophisticated L2O models and diverse optimizees. Our code is available at: https://github.com/VITA-Group/Open-L2O/tree/main/Model_Free_L2O/L2O-Entropy.
Safe Exploration Incurs Nearly No Additional Sample Complexity for Reward-free RL
Huang, Ruiquan, Yang, Jing, Liang, Yingbin
Reward-free reinforcement learning (RF-RL), a recently introduced RL paradigm, relies on random action-taking to explore the unknown environment without any reward feedback information. While the primary goal of the exploration phase in RF-RL is to reduce the uncertainty in the estimated model with minimum number of trajectories, in practice, the agent often needs to abide by certain safety constraint at the same time. It remains unclear how such safe exploration requirement would affect the corresponding sample complexity in order to achieve the desired optimality of the obtained policy in planning. In this work, we make a first attempt to answer this question. In particular, we consider the scenario where a safe baseline policy is known beforehand, and propose a unified Safe reWard-frEe ExploraTion (SWEET) framework. We then particularize the SWEET framework to the tabular and the low-rank MDP settings, and develop algorithms coined Tabular-SWEET and Low-rank-SWEET, respectively. Both algorithms leverage the concavity and continuity of the newly introduced truncated value functions, and are guaranteed to achieve zero constraint violation during exploration with high probability. Furthermore, both algorithms can provably find a near-optimal policy subject to any constraint in the planning phase. Remarkably, the sample complexities under both algorithms match or even outperform the state of the art in their constraint-free counterparts up to some constant factors, proving that safety constraint hardly increases the sample complexity for RF-RL.
Improved Sample Complexity for Reward-free Reinforcement Learning under Low-rank MDPs
Cheng, Yuan, Huang, Ruiquan, Yang, Jing, Liang, Yingbin
In reward-free reinforcement learning (RL), an agent explores the environment first without any reward information, in order to achieve certain learning goals afterwards for any given reward. In this paper we focus on reward-free RL under low-rank MDP models, in which both the representation and linear weight vectors are unknown. Although various algorithms have been proposed for reward-free low-rank MDPs, the corresponding sample complexity is still far from being satisfactory. In this work, we first provide the first known sample complexity lower bound that holds for any algorithm under low-rank MDPs. This lower bound implies it is strictly harder to find a near-optimal policy under low-rank MDPs than under linear MDPs. We then propose a novel model-based algorithm, coined RAFFLE, and show it can both find an $\epsilon$-optimal policy and achieve an $\epsilon$-accurate system identification via reward-free exploration, with a sample complexity significantly improving the previous results. Such a sample complexity matches our lower bound in the dependence on $\epsilon$, as well as on $K$ in the large $d$ regime, where $d$ and $K$ respectively denote the representation dimension and action space cardinality. Finally, we provide a planning algorithm (without further interaction with true environment) for RAFFLE to learn a near-accurate representation, which is the first known representation learning guarantee under the same setting.
M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast Self-Adaptation
Yang, Junjie, Chen, Xuxi, Chen, Tianlong, Wang, Zhangyang, Liang, Yingbin
Learning to Optimize (L2O) has drawn increasing attention as it often remarkably accelerates the optimization procedure of complex tasks by ``overfitting" specific task type, leading to enhanced performance compared to analytical optimizers. Generally, L2O develops a parameterized optimization method (i.e., ``optimizer") by learning from solving sample problems. This data-driven procedure yields L2O that can efficiently solve problems similar to those seen in training, that is, drawn from the same ``task distribution". However, such learned optimizers often struggle when new test problems come with a substantially deviation from the training task distribution. This paper investigates a potential solution to this open challenge, by meta-training an L2O optimizer that can perform fast test-time self-adaptation to an out-of-distribution task, in only a few steps. We theoretically characterize the generalization of L2O, and further show that our proposed framework (termed as M-L2O) provably facilitates rapid task adaptation by locating well-adapted initial points for the optimizer weight. Empirical observations on several classic tasks like LASSO and Quadratic, demonstrate that M-L2O converges significantly faster than vanilla L2O with only $5$ steps of adaptation, echoing our theoretical results. Codes are available in https://github.com/VITA-Group/M-L2O.
Global Convergence of Two-timescale Actor-Critic for Solving Linear Quadratic Regulator
Chen, Xuyang, Duan, Jingliang, Liang, Yingbin, Zhao, Lin
The actor-critic (AC) reinforcement learning algorithms have been the powerhouse behind many challenging applications. Nevertheless, its convergence is fragile in general. To study its instability, existing works mostly consider the uncommon double-loop variant or basic models with finite state and action space. We investigate the more practical single-sample two-timescale AC for solving the canonical linear quadratic regulator (LQR) problem, where the actor and the critic update only once with a single sample in each iteration on an unbounded continuous state and action space. Existing analysis cannot conclude the convergence for such a challenging case. We develop a new analysis framework that allows establishing the global convergence to an $\epsilon$-optimal solution with at most an $\mathcal{O}(\epsilon^{-2.5})$ sample complexity. To our knowledge, this is the first finite-time convergence analysis for the single sample two-timescale AC for solving LQR with global optimality. The sample complexity improves those of other variants by orders, which sheds light on the practical wisdom of single sample algorithms. We also further validate our theoretical findings via comprehensive simulation comparisons.
Theory on Forgetting and Generalization of Continual Learning
Lin, Sen, Ju, Peizhong, Liang, Yingbin, Shroff, Ness
Continual learning (CL) [41] is a learning paradigm where an agent needs to continuously learn a sequence of tasks. To resemble the extraordinary lifelong learning capability of human beings, the agent is expected to learn new tasks more easily based on accumulated knowledge from old tasks, and further improve the learning performance of old tasks by leveraging the knowledge of new tasks. The former is referred to as forward knowledge transfer and the latter as backward knowledge transfer. One major challenge herein is the so-called catastrophic forgetting [36], i.e., the agent easily forgets the knowledge of old tasks when learning new tasks. Although there have been significant efforts in experimental studies (e.g., [27, 14, 50, 16, 17]) to address the forgetting issue, the theoretical understanding of CL is still in the early stage, where only a few attempts have emerged recently, e.g., [49, 12, 16, 17] (see a more detailed discussion about the previous theoretical studies of CL in Section 2). However, none of these existing theoretical results provide an explicit characterization of forgetting and generalization error, that only depends on fundamental system parameters/setups (e.g., number of tasks/samples/parameters, noise level, task similarity/order). Thus, our work here provides the first-known explicit theoretical result, which enables us to comprehensively understand which factors are relevant and how they (precisely) affect forgetting and generalization error of CL. Our main contributions can be summarized as follows. First, we provide theoretical results on the expected value of forgetting and overall generalization error in CL, under a linear regression setup with i.i.d.
A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints
Shi, Ming, Liang, Yingbin, Shroff, Ness
In many applications of Reinforcement Learning (RL), it is critically important that the algorithm performs safely, such that instantaneous hard constraints are satisfied at each step, and unsafe states and actions are avoided. However, existing algorithms for ''safe'' RL are often designed under constraints that either require expected cumulative costs to be bounded or assume all states are safe. Thus, such algorithms could violate instantaneous hard constraints and traverse unsafe states (and actions) in practice. Therefore, in this paper, we develop the first near-optimal safe RL algorithm for episodic Markov Decision Processes with unsafe states and actions under instantaneous hard constraints and the linear mixture model. It not only achieves a regret $\tilde{O}(\frac{d H^3 \sqrt{dK}}{\Delta_c})$ that tightly matches the state-of-the-art regret in the setting with only unsafe actions and nearly matches that in the unconstrained setting, but is also safe at each step, where $d$ is the feature-mapping dimension, $K$ is the number of episodes, $H$ is the number of steps in each episode, and $\Delta_c$ is a safety-related parameter. We also provide a lower bound $\tilde{\Omega}(\max\{dH \sqrt{K}, \frac{H}{\Delta_c^2}\})$, which indicates that the dependency on $\Delta_c$ is necessary. Further, both our algorithm design and regret analysis involve several novel ideas, which may be of independent interest.
Near-Optimal Adversarial Reinforcement Learning with Switching Costs
Shi, Ming, Liang, Yingbin, Shroff, Ness
Switching costs, which capture the costs for changing policies, are regarded as a critical metric in reinforcement learning (RL), in addition to the standard metric of losses (or rewards). However, existing studies on switching costs (with a coefficient $\beta$ that is strictly positive and is independent of $T$) have mainly focused on static RL, where the loss distribution is assumed to be fixed during the learning process, and thus practical scenarios where the loss distribution could be non-stationary or even adversarial are not considered. While adversarial RL better models this type of practical scenarios, an open problem remains: how to develop a provably efficient algorithm for adversarial RL with switching costs? This paper makes the first effort towards solving this problem. First, we provide a regret lower-bound that shows that the regret of any algorithm must be larger than $\tilde{\Omega}( ( H S A )^{1/3} T^{2/3} )$, where $T$, $S$, $A$ and $H$ are the number of episodes, states, actions and layers in each episode, respectively. Our lower bound indicates that, due to the fundamental challenge of switching costs in adversarial RL, the best achieved regret (whose dependency on $T$ is $\tilde{O}(\sqrt{T})$) in static RL with switching costs (as well as adversarial RL without switching costs) is no longer achievable. Moreover, we propose two novel switching-reduced algorithms with regrets that match our lower bound when the transition function is known, and match our lower bound within a small factor of $\tilde{O}( H^{1/3} )$ when the transition function is unknown. Our regret analysis demonstrates the near-optimal performance of them.
Algorithm Design for Online Meta-Learning with Task Boundary Detection
Sow, Daouda, Lin, Sen, Liang, Yingbin, Zhang, Junshan
Online meta-learning has recently emerged as a marriage between batch meta-learning and online learning, for achieving the capability of quick adaptation on new tasks in a lifelong manner. However, most existing approaches focus on the restrictive setting where the distribution of the online tasks remains fixed with known task boundaries. In this work, we relax these assumptions and propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments. More specifically, we first propose two simple but effective detection mechanisms of task switches and distribution shift based on empirical observations, which serve as a key building block for more elegant online model updates in our algorithm: the task switch detection mechanism allows reusing of the best model available for the current task at hand, and the distribution shift detection mechanism differentiates the meta model update in order to preserve the knowledge for in-distribution tasks and quickly learn the new knowledge for out-of-distribution tasks. In particular, our online meta model updates are based only on the current data, which eliminates the need of storing previous data as required in most existing methods. We further show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions. Empirical studies on three different benchmarks clearly demonstrate the significant advantage of our algorithm over related baseline approaches.