Goto

Collaborating Authors

 Liang, Yichao


Predicate Invention from Pixels via Pretrained Vision-Language Models

arXiv.org Artificial Intelligence

Our aim is to learn to solve long-horizon decision-making problems in highly-variable, combinatorially-complex robotics domains given raw sensor input in the form of images. Previous work has shown that one way to achieve this aim is to learn a structured abstract transition model in the form of symbolic predicates and operators, and then plan within this model to solve novel tasks at test time. However, these learned models do not ground directly into pixels from just a handful of demonstrations. In this work, we propose to invent predicates that operate directly over input images by leveraging the capabilities of pretrained vision-language models (VLMs). Our key idea is that, given a set of demonstrations, a VLM can be used to propose a set of predicates that are potentially relevant for decision-making and then to determine the truth values of these predicates in both the given demonstrations and new image inputs. We build upon an existing framework for predicate invention, which generates feature-based predicates operating on object-centric states, to also generate visual predicates that operate on images. Experimentally, we show that our approach -- pix2pred -- is able to invent semantically meaningful predicates that enable generalization to novel, complex, and long-horizon tasks across two simulated robotic environments.


VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning

arXiv.org Artificial Intelligence

Broadly intelligent agents should form task-specific abstractions that selectively expose the essential elements of a task, while abstracting away the complexity of the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations. We outline an online algorithm for inventing such predicates and learning abstract world models. We compare our approach to hierarchical reinforcement learning, vision-language model planning, and symbolic predicate invention approaches, on both in- and out-of-distribution tasks across five simulated robotic domains. Results show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.


Rapid Motor Adaptation for Robotic Manipulator Arms

arXiv.org Artificial Intelligence

Developing generalizable manipulation skills is a core challenge in embodied AI. This includes generalization across diverse task configurations, encompassing variations in object shape, density, friction coefficient, and external disturbances such as forces applied to the robot. Rapid Motor Adaptation (RMA) offers a promising solution to this challenge. It posits that essential hidden variables influencing an agent's task performance, such as object mass and shape, can be effectively inferred from the agent's action and proprioceptive history. Drawing inspiration from RMA in locomotion and in-hand rotation, we use depth perception to develop agents tailored for rapid motor adaptation in a variety of manipulation tasks. We evaluated our agents on four challenging tasks from the Maniskill2 benchmark, namely pick-and-place operations with hundreds of objects from the YCB and EGAD datasets, peg insertion with precise position and orientation, and operating a variety of faucets and handles, with customized environment variations. Empirical results demonstrate that our agents surpass state-of-the-art methods like automatic domain randomization and vision-based policies, obtaining better generalization performance and sample efficiency.