Goto

Collaborating Authors

 Liang, Xu


A Weight-aware-based Multi-source Unsupervised Domain Adaptation Method for Human Motion Intention Recognition

arXiv.org Artificial Intelligence

Accurate recognition of human motion intention (HMI) is beneficial for exoskeleton robots to improve the wearing comfort level and achieve natural human-robot interaction. A classifier trained on labeled source subjects (domains) performs poorly on unlabeled target subject since the difference in individual motor characteristics. The unsupervised domain adaptation (UDA) method has become an effective way to this problem. However, the labeled data are collected from multiple source subjects that might be different not only from the target subject but also from each other. The current UDA methods for HMI recognition ignore the difference between each source subject, which reduces the classification accuracy. Therefore, this paper considers the differences between source subjects and develops a novel theory and algorithm for UDA to recognize HMI, where the margin disparity discrepancy (MDD) is extended to multi-source UDA theory and a novel weight-aware-based multi-source UDA algorithm (WMDD) is proposed. The source domain weight, which can be adjusted adaptively by the MDD between each source subject and target subject, is incorporated into UDA to measure the differences between source subjects. The developed multi-source UDA theory is theoretical and the generalization error on target subject is guaranteed. The theory can be transformed into an optimization problem for UDA, successfully bridging the gap between theory and algorithm. Moreover, a lightweight network is employed to guarantee the real-time of classification and the adversarial learning between feature generator and ensemble classifiers is utilized to further improve the generalization ability. The extensive experiments verify theoretical analysis and show that WMDD outperforms previous UDA methods on HMI recognition tasks.


Touchless Palmprint Recognition based on 3D Gabor Template and Block Feature Refinement

arXiv.org Artificial Intelligence

With the growing demand for hand hygiene and convenience of use, palmprint recognition with touchless manner made a great development recently, providing an effective solution for person identification. Despite many efforts that have been devoted to this area, it is still uncertain about the discriminative ability of the contactless palmprint, especially for large-scale datasets. To tackle the problem, in this paper, we build a large-scale touchless palmprint dataset containing 2334 palms from 1167 individuals. To our best knowledge, it is the largest contactless palmprint image benchmark ever collected with regard to the number of individuals and palms. Besides, we propose a novel deep learning framework for touchless palmprint recognition named 3DCPN (3D Convolution Palmprint recognition Network) which leverages 3D convolution to dynamically integrate multiple Gabor features. In 3DCPN, a novel variant of Gabor filter is embedded into the first layer for enhancement of curve feature extraction. With a well-designed ensemble scheme,low-level 3D features are then convolved to extract high-level features. Finally on the top, we set a region-based loss function to strengthen the discriminative ability of both global and local descriptors. To demonstrate the superiority of our method, extensive experiments are conducted on our dataset and other popular databases TongJi and IITD, where the results show the proposed 3DCPN achieves state-of-the-art or comparable performances.