Goto

Collaborating Authors

 Liang, Xiaokun


Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge

arXiv.org Artificial Intelligence

Multi-class segmentation of the aorta in computed tomography angiography (CTA) scans is essential for diagnosing and planning complex endovascular treatments for patients with aortic dissections. However, existing methods reduce aortic segmentation to a binary problem, limiting their ability to measure diameters across different branches and zones. Furthermore, no open-source dataset is currently available to support the development of multi-class aortic segmentation methods. To address this gap, we organized the AortaSeg24 MICCAI Challenge, introducing the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones. This dataset was designed to facilitate both model development and validation. The challenge attracted 121 teams worldwide, with participants leveraging state-of-the-art frameworks such as nnU-Net and exploring novel techniques, including cascaded models, data augmentation strategies, and custom loss functions. We evaluated the submitted algorithms using the Dice Similarity Coefficient (DSC) and Normalized Surface Distance (NSD), highlighting the approaches adopted by the top five performing teams. This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms. The annotated dataset, evaluation code, and implementations of the leading methods are publicly available to support further research. All resources can be accessed at https://aortaseg24.grand-challenge.org.


Mammo-Clustering:A Weakly Supervised Multi-view Global-Local Context Clustering Network for Detection and Classification in Mammography

arXiv.org Artificial Intelligence

Breast cancer has long posed a significant threat to women's health, making early screening crucial for mitigating its impact. However, mammography, the preferred method for early screening, faces limitations such as the burden of double reading by radiologists, challenges in widespread adoption in remote and underdeveloped areas, and obstacles in intelligent early screening development due to data constraints. To address these challenges, we propose a weakly supervised multi-view mammography early screening model for breast cancer based on context clustering. Context clustering, a feature extraction structure that is neither CNN nor transformer, combined with multi-view learning for information complementation, presents a promising approach. The weak supervision design specifically addresses data limitations. Our model achieves state-of-the-art performance with fewer parameters on two public datasets, with an AUC of 0.828 on the Vindr-Mammo dataset and 0.805 on the CBIS-DDSM dataset. Our model shows potential in reducing the burden on doctors and increasing the feasibility of breast cancer screening for women in underdeveloped regions.


A Hybrid Deep Feature-Based Deformable Image Registration Method for Pathology Images

arXiv.org Artificial Intelligence

Pathologists need to combine information from differently stained pathology slices for accurate diagnosis. Deformable image registration is a necessary technique for fusing multi-modal pathology slices. This paper proposes a hybrid deep feature-based deformable image registration framework for stained pathology samples. We first extract dense feature points via the detector-based and detector-free deep learning feature networks and perform points matching. Then, to further reduce false matches, an outlier detection method combining the isolation forest statistical model and the local affine correction model is proposed. Finally, the interpolation method generates the deformable vector field for pathology image registration based on the above matching points. We evaluate our method on the dataset of the Non-rigid Histology Image Registration (ANHIR) challenge, which is co-organized with the IEEE ISBI 2019 conference. Our technique outperforms the traditional approaches by 17% with the Average-Average registration target error (rTRE) reaching 0.0034. The proposed method achieved state-of-the-art performance and ranked 1st in evaluating the test dataset. The proposed hybrid deep feature-based registration method can potentially become a reliable method for pathology image registration.