Goto

Collaborating Authors

 Liang, Xianfeng


Long-term Joint Scheduling for Urban Traffic

arXiv.org Artificial Intelligence

Recently, the traffic congestion in modern cities has become a growing worry for the residents. As presented in Baidu traffic report, the commuting stress index has reached surprising 1.973 in Beijing during rush hours, which results in longer trip time and increased vehicular queueing. Previous works have demonstrated that by reasonable scheduling, e.g, rebalancing bike-sharing systems and optimized bus transportation, the traffic efficiency could be significantly improved with little resource consumption. However, there are still two disadvantages that restrict their performance: (1) they only consider single scheduling in a short time, but ignoring the layout after first reposition, and (2) they only focus on the single transport. However, the multi-modal characteristics of urban public transportation are largely under-exploited. In this paper, we propose an efficient and economical multi-modal traffic scheduling scheme named JLRLS based on spatio -temporal prediction, which adopts reinforcement learning to obtain optimal long-term and joint schedule. In JLRLS, we combines multiple transportation to conduct scheduling by their own characteristics, which potentially helps the system to reach the optimal performance. Our implementation of an example by PaddlePaddle is available at https://github.com/bigdata-ustc/Long-term-Joint-Scheduling, with an explaining video at https://youtu.be/t5M2wVPhTyk.


Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent

arXiv.org Machine Learning

With the increase in the amount of data and the expansion of model scale, distributed parallel training becomes an important and successful technique to address the optimization challenges. Nevertheless, although distributed stochastic gradient descent (SGD) algorithms can achieve a linear iteration speedup, they are limited significantly in practice by the communication cost, making it difficult to achieve a linear time speedup. In this paper, we propose a computation and communication decoupled stochastic gradient descent (CoCoD-SGD) algorithm to run computation and communication in parallel to reduce the communication cost. We prove that CoCoD-SGD has a linear iteration speedup with respect to the total computation capability of the hardware resources. In addition, it has a lower communication complexity and better time speedup comparing with traditional distributed SGD algorithms. Experiments on deep neural network training demonstrate the significant improvements of CoCoD-SGD: when training ResNet18 and VGG16 with 16 Geforce GTX 1080Ti GPUs, CoCoD-SGD is up to 2-3$\times$ faster than traditional synchronous SGD.