Liang, Percy S.
Unsupervised Transformation Learning via Convex Relaxations
Hashimoto, Tatsunori B., Liang, Percy S., Duchi, John C.
Our goal is to extract meaningful transformations from raw images, such as varying the thickness of lines in handwriting or the lighting in a portrait. We propose an unsupervised approach to learn such transformations by attempting to reconstruct an image from a linear combination of transformations of its nearest neighbors. On handwritten digits and celebrity portraits, we show that even with linear transformations, our method generates visually high-quality modified images. Moreover, since our method is semiparametric and does not model the data distribution, the learned transformations extrapolate off the training data and can be applied to new types of images. Papers published at the Neural Information Processing Systems Conference.
Dropout Training as Adaptive Regularization
Wager, Stefan, Wang, Sida, Liang, Percy S.
Dropout and other feature noising schemes control overfitting by artificially corrupting the training data. For generalized linear models, dropout performs a form of adaptive regularization. Using this viewpoint, we show that the dropout regularizer is first-order equivalent to an $\LII$ regularizer applied after scaling the features by an estimate of the inverse diagonal Fisher information matrix. We also establish a connection to AdaGrad, an online learner, and find that a close relative of AdaGrad operates by repeatedly solving linear dropout-regularized problems. By casting dropout as regularization, we develop a natural semi-supervised algorithm that uses unlabeled data to create a better adaptive regularizer.
Simple MAP Inference via Low-Rank Relaxations
Frostig, Roy, Wang, Sida, Liang, Percy S., Manning, Christopher D.
We focus on the problem of maximum a posteriori (MAP) inference in Markov random fields with binary variables and pairwise interactions. For this common subclass of inference tasks, we consider low-rank relaxations that interpolate between the discrete problem and its full-rank semidefinite relaxation, followed by randomized rounding. We develop new theoretical bounds studying the effect of rank, showing that as the rank grows, the relaxed objective increases but saturates, and that the fraction in objective value retained by the rounded discrete solution decreases. In practice, we show two algorithms for optimizing the low-rank objectives which are simple to implement, enjoy ties to the underlying theory, and outperform existing approaches on benchmark MAP inference tasks. Papers published at the Neural Information Processing Systems Conference.
A Retrieve-and-Edit Framework for Predicting Structured Outputs
Hashimoto, Tatsunori B., Guu, Kelvin, Oren, Yonatan, Liang, Percy S.
For the task of generating complex outputs such as source code, editing existing outputs can be easier than generating complex outputs from scratch. With this motivation, we propose an approach that first retrieves a training example based on the input (e.g., natural language description) and then edits it to the desired output (e.g., code). Our contribution is a computationally efficient method for learning a retrieval model that embeds the input in a task-dependent way without relying on a hand-crafted metric or incurring the expense of jointly training the retriever with the editor. Our retrieve-and-edit framework can be applied on top of any base model. We show that on a new autocomplete task for GitHub Python code and the Hearthstone cards benchmark, retrieve-and-edit significantly boosts the performance of a vanilla sequence-to-sequence model on both tasks.
Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss
Mussmann, Stephen, Liang, Percy S.
Uncertainty sampling, a popular active learning algorithm, is used to reduce the amount of data required to learn a classifier, but it has been observed in practice to converge to different parameters depending on the initialization and sometimes to even better parameters than standard training on all the data. In this work, we give a theoretical explanation of this phenomenon, showing that uncertainty sampling on a convex (e.g., logistic) loss can be interpreted as performing a preconditioned stochastic gradient step on the population zero-one loss. Experiments on synthetic and real datasets support this connection.
Semidefinite relaxations for certifying robustness to adversarial examples
Raghunathan, Aditi, Steinhardt, Jacob, Liang, Percy S.
Despite their impressive performance on diverse tasks, neural networks fail catastrophically in the presence of adversarial inputs--imperceptibly but adversarially perturbed versions of natural inputs. We have witnessed an arms race between defenders who attempt to train robust networks and attackers who try to construct adversarial examples. One promise of ending the arms race is developing certified defenses, ones which are provably robust against all attackers in some family. These certified defenses are based on convex relaxations which construct an upper bound on the worst case loss over all attackers in the family. Previous relaxations are loose on networks that are not trained against the respective relaxation. In this paper, we propose a new semidefinite relaxation for certifying robustness that applies to arbitrary ReLU networks. We show that our proposed relaxation is tighter than previous relaxations and produces meaningful robustness guarantees on three different foreign networks whose training objectives are agnostic to our proposed relaxation.
A Retrieve-and-Edit Framework for Predicting Structured Outputs
Hashimoto, Tatsunori B., Guu, Kelvin, Oren, Yonatan, Liang, Percy S.
For the task of generating complex outputs such as source code, editing existing outputs can be easier than generating complex outputs from scratch. With this motivation, we propose an approach that first retrieves a training example based on the input (e.g., natural language description) and then edits it to the desired output (e.g., code). Our contribution is a computationally efficient method for learning a retrieval model that embeds the input in a task-dependent way without relying on a hand-crafted metric or incurring the expense of jointly training the retriever with the editor. Our retrieve-and-edit framework can be applied on top of any base model. We show that on a new autocomplete task for GitHub Python code and the Hearthstone cards benchmark, retrieve-and-edit significantly boosts the performance of a vanilla sequence-to-sequence model on both tasks.
Semidefinite relaxations for certifying robustness to adversarial examples
Raghunathan, Aditi, Steinhardt, Jacob, Liang, Percy S.
Despite their impressive performance on diverse tasks, neural networks fail catastrophically in the presence of adversarial inputs—imperceptibly but adversarially perturbed versions of natural inputs. We have witnessed an arms race between defenders who attempt to train robust networks and attackers who try to construct adversarial examples. One promise of ending the arms race is developing certified defenses, ones which are provably robust against all attackers in some family. These certified defenses are based on convex relaxations which construct an upper bound on the worst case loss over all attackers in the family. Previous relaxations are loose on networks that are not trained against the respective relaxation. In this paper, we propose a new semidefinite relaxation for certifying robustness that applies to arbitrary ReLU networks. We show that our proposed relaxation is tighter than previous relaxations and produces meaningful robustness guarantees on three different foreign networks whose training objectives are agnostic to our proposed relaxation.
Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss
Mussmann, Stephen, Liang, Percy S.
Uncertainty sampling, a popular active learning algorithm, is used to reduce the amount of data required to learn a classifier, but it has been observed in practice to converge to different parameters depending on the initialization and sometimes to even better parameters than standard training on all the data. In this work, we give a theoretical explanation of this phenomenon, showing that uncertainty sampling on a convex (e.g., logistic) loss can be interpreted as performing a preconditioned stochastic gradient step on the population zero-one loss. Experiments on synthetic and real datasets support this connection.
Unsupervised Transformation Learning via Convex Relaxations
Hashimoto, Tatsunori B., Liang, Percy S., Duchi, John C.
Our goal is to extract meaningful transformations from raw images, such as varying the thickness of lines in handwriting or the lighting in a portrait. We propose an unsupervised approach to learn such transformations by attempting to reconstruct an image from a linear combination of transformations of its nearest neighbors. On handwritten digits and celebrity portraits, we show that even with linear transformations, our method generates visually high-quality modified images. Moreover, since our method is semiparametric and does not model the data distribution, the learned transformations extrapolate off the training data and can be applied to new types of images.