Liang, Junjie
RTBAgent: A LLM-based Agent System for Real-Time Bidding
Cai, Leng, He, Junxuan, Li, Yikai, Liang, Junjie, Lin, Yuanping, Quan, Ziming, Zeng, Yawen, Xu, Jin
Real-Time Bidding (RTB) enables advertisers to place competitive bids on impression opportunities instantaneously, striving for cost-effectiveness in a highly competitive landscape. Although RTB has widely benefited from the utilization of technologies such as deep learning and reinforcement learning, the reliability of related methods often encounters challenges due to the discrepancies between online and offline environments and the rapid fluctuations of online bidding. To handle these challenges, RTBAgent is proposed as the first RTB agent system based on large language models (LLMs), which synchronizes real competitive advertising bidding environments and obtains bidding prices through an integrated decision-making process. Specifically, obtaining reasoning ability through LLMs, RTBAgent is further tailored to be more professional for RTB via involved auxiliary modules, i.e., click-through rate estimation model, expert strategy knowledge, and daily reflection. In addition, we propose a two-step decision-making process and multi-memory retrieval mechanism, which enables RTBAgent to review historical decisions and transaction records and subsequently make decisions more adaptive to market changes in real-time bidding. Empirical testing with real advertising datasets demonstrates that RTBAgent significantly enhances profitability. The RTBAgent code will be publicly accessible at: https://github.com/CaiLeng/RTBAgent.
NP$^2$L: Negative Pseudo Partial Labels Extraction for Graph Neural Networks
Shen, Xinjie, Wu, Danyang, Lu, Jitao, Liang, Junjie, Xu, Jin, Nie, Feiping
How to utilize the pseudo labels has always been a research hotspot in machine learning. However, most methods use pseudo labels as supervised training, and lack of valid assessing for their accuracy. Moreover, applications of pseudo labels in graph neural networks (GNNs) oversee the difference between graph learning and other machine learning tasks such as message passing mechanism. Aiming to address the first issue, we found through a large number of experiments that the pseudo labels are more accurate if they are selected by not overlapping partial labels and defined as negative node pairs relations. Therefore, considering the extraction based on pseudo and partial labels, negative edges are constructed between two nodes by the negative pseudo partial labels extraction (NP$^2$E) module. With that, a signed graph are built containing highly accurate pseudo labels information from the original graph, which effectively assists GNN in learning at the message-passing level, provide one solution to the second issue. Empirical results about link prediction and node classification tasks on several benchmark datasets demonstrate the effectiveness of our method. State-of-the-art performance is achieved on the both tasks.
Longitudinal Deep Kernel Gaussian Process Regression
Liang, Junjie, Wu, Yanting, Xu, Dongkuan, Honavar, Vasant
Gaussian processes offer an attractive framework for predictive modeling from longitudinal data, i.e., irregularly sampled, sparse observations from a set of individuals over time. However, such methods have two key shortcomings: (i) They rely on ad hoc heuristics or expensive trial and error to choose the effective kernels, and (ii) They fail to handle multilevel correlation structure in the data. We introduce Longitudinal deep kernel Gaussian process regression (L-DKGPR), which to the best of our knowledge, is the only method to overcome these limitations by fully automating the discovery of complex multilevel correlation structure from longitudinal data. Specifically, L-DKGPR eliminates the need for ad hoc heuristics or trial and error using a novel adaptation of deep kernel learning that combines the expressive power of deep neural networks with the flexibility of non-parametric kernel methods. L-DKGPR effectively learns the multilevel correlation with a novel addictive kernel that simultaneously accommodates both time-varying and the time-invariant effects. We derive an efficient algorithm to train L-DKGPR using latent space inducing points and variational inference. Results of extensive experiments on several benchmark data sets demonstrate that L-DKGPR significantly outperforms the state-of-the-art longitudinal data analysis (LDA) methods.
Top-N-Rank: A Scalable List-wise Ranking Method for Recommender Systems
Liang, Junjie, Hu, Jinlong, Dong, Shoubin, Honavar, Vasant
We propose Top-N-Rank, a novel family of list-wise Learning-to-Rank models for reliably recommending the N top-ranked items. The proposed models optimize a variant of the widely used discounted cumulative gain (DCG) objective function which differs from DCG in two important aspects: (i) It limits the evaluation of DCG only on the top N items in the ranked lists, thereby eliminating the impact of low-ranked items on the learned ranking function; and (ii) it incorporates weights that allow the model to leverage multiple types of implicit feedback with differing levels of reliability or trustworthiness. Because the resulting objective function is non-smooth and hence challenging to optimize, we consider two smooth approximations of the objective function, using the traditional sigmoid function and the rectified linear unit (ReLU). We propose a family of learning-to-rank algorithms (Top-N-Rank) that work with any smooth objective function. Then, a more efficient variant, Top-N-Rank.ReLU, is introduced, which effectively exploits the properties of ReLU function to reduce the computational complexity of Top-N-Rank from quadratic to linear in the average number of items rated by users. The results of our experiments using two widely used benchmarks, namely, the MovieLens data set and the Amazon Video Games data set demonstrate that: (i) The `top-N truncation' of the objective function substantially improves the ranking quality of the top N recommendations; (ii) using the ReLU for smoothing the objective function yields significant improvement in both ranking quality as well as runtime as compared to using the sigmoid; and (iii) Top-N-Rank.ReLU substantially outperforms the well-performing list-wise ranking methods in terms of ranking quality.