Liang, Jenny
Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits
Mun, Jimin, Jiang, Liwei, Liang, Jenny, Cheong, Inyoung, DeCario, Nicole, Choi, Yejin, Kohno, Tadayoshi, Sap, Maarten
General purpose AI, such as ChatGPT, seems to have lowered the barriers for the public to use AI and harness its power. However, the governance and development of AI still remain in the hands of a few, and the pace of development is accelerating without proper assessment of risks. As a first step towards democratic governance and risk assessment of AI, we introduce Particip-AI, a framework to gather current and future AI use cases and their harms and benefits from non-expert public. Our framework allows us to study more nuanced and detailed public opinions on AI through collecting use cases, surfacing diverse harms through risk assessment under alternate scenarios (i.e., developing and not developing a use case), and illuminating tensions over AI development through making a concluding choice on its development. To showcase the promise of our framework towards guiding democratic AI, we gather responses from 295 demographically diverse participants. We find that participants' responses emphasize applications for personal life and society, contrasting with most current AI development's business focus. This shows the value of surfacing diverse harms that are complementary to expert assessments. Furthermore, we found that perceived impact of not developing use cases predicted participants' judgements of whether AI use cases should be developed, and highlighted lay users' concerns of techno-solutionism. We conclude with a discussion on how frameworks like Particip-AI can further guide democratic AI governance and regulation.
Can Machines Learn Morality? The Delphi Experiment
Jiang, Liwei, Hwang, Jena D., Bhagavatula, Chandra, Bras, Ronan Le, Liang, Jenny, Dodge, Jesse, Sakaguchi, Keisuke, Forbes, Maxwell, Borchardt, Jon, Gabriel, Saadia, Tsvetkov, Yulia, Etzioni, Oren, Sap, Maarten, Rini, Regina, Choi, Yejin
As AI systems become increasingly powerful and pervasive, there are growing concerns about machines' morality or a lack thereof. Yet, teaching morality to machines is a formidable task, as morality remains among the most intensely debated questions in humanity, let alone for AI. Existing AI systems deployed to millions of users, however, are already making decisions loaded with moral implications, which poses a seemingly impossible challenge: teaching machines moral sense, while humanity continues to grapple with it. To explore this challenge, we introduce Delphi, an experimental framework based on deep neural networks trained directly to reason about descriptive ethical judgments, e.g., "helping a friend" is generally good, while "helping a friend spread fake news" is not. Empirical results shed novel insights on the promises and limits of machine ethics; Delphi demonstrates strong generalization capabilities in the face of novel ethical situations, while off-the-shelf neural network models exhibit markedly poor judgment including unjust biases, confirming the need for explicitly teaching machines moral sense. Yet, Delphi is not perfect, exhibiting susceptibility to pervasive biases and inconsistencies. Despite that, we demonstrate positive use cases of imperfect Delphi, including using it as a component model within other imperfect AI systems. Importantly, we interpret the operationalization of Delphi in light of prominent ethical theories, which leads us to important future research questions.