Liang, James Chenhao
Re-Imagining Multimodal Instruction Tuning: A Representation View
Liu, Yiyang, Liang, James Chenhao, Tang, Ruixiang, Lee, Yugyung, Rabbani, Majid, Dianat, Sohail, Rao, Raghuveer, Huang, Lifu, Liu, Dongfang, Wang, Qifan, Han, Cheng
Multimodal instruction tuning has proven to be an effective strategy for achieving zero-shot generalization by fine-tuning pre-trained Large Multimodal Models (LMMs) with instruction-following data. However, as the scale of LMMs continues to grow, fully fine-tuning these models has become highly parameter-intensive. Although Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced to reduce the number of tunable parameters, a significant performance gap remains compared to full fine-tuning. Furthermore, existing PEFT approaches are often highly parameterized, making them difficult to interpret and control. In light of this, we introduce Multimodal Representation Tuning (MRT), a novel approach that focuses on directly editing semantically rich multimodal representations to achieve strong performance and provide intuitive control over LMMs. Empirical results show that our method surpasses current state-of-the-art baselines with significant performance gains (e.g., 1580.40 MME score) while requiring substantially fewer tunable parameters (e.g., 0.03% parameters). Additionally, we conduct experiments on editing instrumental tokens within multimodal representations, demonstrating that direct manipulation of these representations enables simple yet effective control over network behavior.
Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics
Wang, Taowen, Liu, Dongfang, Liang, James Chenhao, Yang, Wenhao, Wang, Qifan, Han, Cheng, Luo, Jiebo, Tang, Ruixiang
Recently in robotics, Vision-Language-Action (VLA) models have emerged as a transformative approach, enabling robots to execute complex tasks by integrating visual and linguistic inputs within an end-to-end learning framework. While VLA models offer significant capabilities, they also introduce new attack surfaces, making them vulnerable to adversarial attacks. With these vulnerabilities largely unexplored, this paper systematically quantifies the robustness of VLA-based robotic systems. Recognizing the unique demands of robotic execution, our attack objectives target the inherent spatial and functional characteristics of robotic systems. In particular, we introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions, and a targeted attack objective that manipulates the robotic trajectory. Additionally, we design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments. Our evaluation reveals a marked degradation in task success rates, with up to a 100\% reduction across a suite of simulated robotic tasks, highlighting critical security gaps in current VLA architectures. By unveiling these vulnerabilities and proposing actionable evaluation metrics, this work advances both the understanding and enhancement of safety for VLA-based robotic systems, underscoring the necessity for developing robust defense strategies prior to physical-world deployments.
M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning
Wang, Taowen, Liu, Yiyang, Liang, James Chenhao, zhao, junhan, Cui, Yiming, Mao, Yuning, Nie, Shaoliang, Liu, Jiahao, Feng, Fuli, Xu, Zenglin, Han, Cheng, Huang, Lifu, Wang, Qifan, Liu, Dongfang
Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains, with increasing emphasis on enhancing their zero-shot generalization capabilities for unseen tasks across various modalities. Instruction tuning has emerged as an effective strategy for achieving zero-shot generalization by finetuning pretrained models on diverse multimodal tasks. As the scale of MLLMs continues to grow, parameter-efficient finetuning becomes increasingly critical. However, most existing parameter-efficient approaches focus only on single modalities and often overlook the multimodal characteristics during finetuning. In this work, we introduce a novel Multimodal Prompt Tuning (M$^2$PT) approach for efficient instruction tuning of MLLMs. M$^2$PT effectively integrates visual and textual prompts into the vision encoder and language processor respectively during finetuning, facilitating the extraction and alignment of features across modalities. Empirical results on various multimodal evaluation datasets demonstrate the superior performance of our approach compared to several state-of-the-art baselines. A comprehensive set of ablation studies validates the effectiveness of our prompt design and the efficiency of our approach.
Inertial Confinement Fusion Forecasting via LLMs
Chen, Mingkai, Wang, Taowen, Liang, James Chenhao, Liu, Chuan, Wu, Chunshu, Wang, Qifan, Wu, Ying Nian, Huang, Michael, Ren, Chuang, Li, Ang, Geng, Tong, Liu, Dongfang
Controlled fusion energy is deemed pivotal for the advancement of human civilization. In this study, we introduce $\textbf{Fusion-LLM}$, a novel integration of Large Language Models (LLMs) with classical reservoir computing paradigms tailored to address challenges in Inertial Confinement Fusion ($\texttt{ICF}$). Our approach offers several key contributions: Firstly, we propose the $\textit{LLM-anchored Reservoir}$, augmented with a fusion-specific prompt, enabling accurate forecasting of hot electron dynamics during implosion. Secondly, we develop $\textit{Signal-Digesting Channels}$ to temporally and spatially describe the laser intensity across time, capturing the unique characteristics of $\texttt{ICF}$ inputs. Lastly, we design the $\textit{Confidence Scanner}$ to quantify the confidence level in forecasting, providing valuable insights for domain experts to design the $\texttt{ICF}$ process. Extensive experiments demonstrate the superior performance of our method, achieving 1.90 CAE, 0.14 $\texttt{top-1}$ MAE, and 0.11 $\texttt{top-5}$ MAE in predicting Hard X-ray ($\texttt{HXR}$) energies of $\texttt{ICF}$ tasks, which presents state-of-the-art comparisons against concurrent best systems. Additionally, we present $\textbf{Fusion4AI}$, the first $\texttt{ICF}$ benchmark based on physical experiments, aimed at fostering novel ideas in plasma physics research and enhancing the utility of LLMs in scientific exploration. Overall, our work strives to forge an innovative synergy between AI and plasma science for advancing fusion energy.