Liang, Faming
Magnitude Pruning of Large Pretrained Transformer Models with a Mixture Gaussian Prior
Zhang, Mingxuan, Sun, Yan, Liang, Faming
Large pretrained transformer models have revolutionized modern AI applications with their state-of-the-art performance in natural language processing (NLP). However, their substantial parameter count poses challenges for real-world deployment. To address this, researchers often reduce model size by pruning parameters based on their magnitude or sensitivity. Previous research has demonstrated the limitations of magnitude pruning, especially in the context of transfer learning for modern NLP tasks. In this paper, we introduce a new magnitude-based pruning algorithm called mixture Gaussian prior pruning (MGPP), which employs a mixture Gaussian prior for regularization. MGPP prunes non-expressive weights under the guidance of the mixture Gaussian prior, aiming to retain the model's expressive capability. Extensive evaluations across various NLP tasks, including natural language understanding, question answering, and natural language generation, demonstrate the superiority of MGPP over existing pruning methods, particularly in high sparsity settings. Additionally, we provide a theoretical justification for the consistency of the sparse transformer, shedding light on the effectiveness of the proposed pruning method.
Causal-StoNet: Causal Inference for High-Dimensional Complex Data
Fang, Yaxin, Liang, Faming
With the advancement of data science, the collection of increasingly complex datasets has become commonplace. In such datasets, the data dimension can be extremely high, and the underlying data generation process can be unknown and highly nonlinear. As a result, the task of making causal inference with high-dimensional complex data has become a fundamental problem in many disciplines, such as medicine, econometrics, and social science. However, the existing methods for causal inference are frequently developed under the assumption that the data dimension is low or that the underlying data generation process is linear or approximately linear. To address these challenges, this paper proposes a novel causal inference approach for dealing with high-dimensional complex data. The proposed approach is based on deep learning techniques, including sparse deep learning theory and stochastic neural networks, that have been developed in recent literature. By using these techniques, the proposed approach can address both the high dimensionality and unknown data generation process in a coherent way. Furthermore, the proposed approach can also be used when missing values are present in the datasets. Extensive numerical studies indicate that the proposed approach outperforms existing ones.
Fast Value Tracking for Deep Reinforcement Learning
Shih, Frank, Liang, Faming
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interacts with their environment. However, existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards, neglecting the stochastic dynamics of agent-environment interactions and the critical role of uncertainty quantification. Our research leverages the Kalman filtering paradigm to introduce a novel and scalable sampling algorithm called Langevinized Kalman Temporal-Difference (LKTD) for deep reinforcement learning. This algorithm, grounded in Stochastic Gradient Markov Chain Monte Carlo (SGMCMC), efficiently draws samples from the posterior distribution of deep neural network parameters. Under mild conditions, we prove that the posterior samples generated by the LKTD algorithm converge to a stationary distribution. This convergence not only enables us to quantify uncertainties associated with the value function and model parameters but also allows us to monitor these uncertainties during policy updates throughout the training phase. The LKTD algorithm paves the way for more robust and adaptable reinforcement learning approaches.
Sparse Deep Learning for Time Series Data: Theory and Applications
Zhang, Mingxuan, Sun, Yan, Liang, Faming
Sparse deep learning has become a popular technique for improving the performance of deep neural networks in areas such as uncertainty quantification, variable selection, and large-scale network compression. However, most existing research has focused on problems where the observations are independent and identically distributed (i.i.d.), and there has been little work on the problems where the observations are dependent, such as time series data and sequential data in natural language processing. This paper aims to address this gap by studying the theory for sparse deep learning with dependent data. We show that sparse recurrent neural networks (RNNs) can be consistently estimated, and their predictions are asymptotically normally distributed under appropriate assumptions, enabling the prediction uncertainty to be correctly quantified. Our numerical results show that sparse deep learning outperforms state-of-the-art methods, such as conformal predictions, in prediction uncertainty quantification for time series data. Furthermore, our results indicate that the proposed method can consistently identify the autoregressive order for time series data and outperform existing methods in large-scale model compression. Our proposed method has important practical implications in fields such as finance, healthcare, and energy, where both accurate point estimates and prediction uncertainty quantification are of concern.
A New Paradigm for Generative Adversarial Networks based on Randomized Decision Rules
Kim, Sehwan, Song, Qifan, Liang, Faming
The Generative Adversarial Network (GAN) was recently introduced in the literature as a novel machine learning method for training generative models. It has many applications in statistics such as nonparametric clustering and nonparametric conditional independence tests. However, training the GAN is notoriously difficult due to the issue of mode collapse, which refers to the lack of diversity among generated data. In this paper, we identify the reasons why the GAN suffers from this issue, and to address it, we propose a new formulation for the GAN based on randomized decision rules. In the new formulation, the discriminator converges to a fixed point while the generator converges to a distribution at the Nash equilibrium. We propose to train the GAN by an empirical Bayes-like method by treating the discriminator as a hyper-parameter of the posterior distribution of the generator. Specifically, we simulate generators from its posterior distribution conditioned on the discriminator using a stochastic gradient Markov chain Monte Carlo (MCMC) algorithm, and update the discriminator using stochastic gradient descent along with simulations of the generators. We establish convergence of the proposed method to the Nash equilibrium. Apart from image generation, we apply the proposed method to nonparametric clustering and nonparametric conditional independence tests. A portion of the numerical results is presented in the supplementary material.
Non-reversible Parallel Tempering for Deep Posterior Approximation
Deng, Wei, Zhang, Qian, Feng, Qi, Liang, Faming, Lin, Guang
Parallel tempering (PT), also known as replica exchange, is the go-to workhorse for simulations of multi-modal distributions. The key to the success of PT is to adopt efficient swap schemes. The popular deterministic even-odd (DEO) scheme exploits the non-reversibility property and has successfully reduced the communication cost from $O(P^2)$ to $O(P)$ given sufficiently many $P$ chains. However, such an innovation largely disappears in big data due to the limited chains and few bias-corrected swaps. To handle this issue, we generalize the DEO scheme to promote non-reversibility and propose a few solutions to tackle the underlying bias caused by the geometric stopping time. Notably, in big data scenarios, we obtain an appealing communication cost $O(P\log P)$ based on the optimal window size. In addition, we also adopt stochastic gradient descent (SGD) with large and constant learning rates as exploration kernels. Such a user-friendly nature enables us to conduct approximation tasks for complex posteriors without much tuning costs.
A Kernel-Expanded Stochastic Neural Network
Sun, Yan, Liang, Faming
The deep neural network suffers from many fundamental issues in machine learning. For example, it often gets trapped into a local minimum in training, and its prediction uncertainty is hard to be assessed. To address these issues, we propose the so-called kernel-expanded stochastic neural network (K-StoNet) model, which incorporates support vector regression (SVR) as the first hidden layer and reformulates the neural network as a latent variable model. The former maps the input vector into an infinite dimensional feature space via a radial basis function (RBF) kernel, ensuring absence of local minima on its training loss surface. The latter breaks the high-dimensional nonconvex neural network training problem into a series of low-dimensional convex optimization problems, and enables its prediction uncertainty easily assessed. The K-StoNet can be easily trained using the imputation-regularized optimization (IRO) algorithm. Compared to traditional deep neural networks, K-StoNet possesses a theoretical guarantee to asymptotically converge to the global optimum and enables the prediction uncertainty easily assessed. The performances of the new model in training, prediction and uncertainty quantification are illustrated by simulated and real data examples.
Sparse Deep Learning: A New Framework Immune to Local Traps and Miscalibration
Sun, Yan, Xiong, Wenjun, Liang, Faming
Deep learning has powered recent successes of artificial intelligence (AI). However, the deep neural network, as the basic model of deep learning, has suffered from issues such as local traps and miscalibration. In this paper, we provide a new framework for sparse deep learning, which has the above issues addressed in a coherent way. In particular, we lay down a theoretical foundation for sparse deep learning and propose prior annealing algorithms for learning sparse neural networks. The former has successfully tamed the sparse deep neural network into the framework of statistical modeling, enabling prediction uncertainty correctly quantified. The latter can be asymptotically guaranteed to converge to the global optimum, enabling the validity of the down-stream statistical inference. Numerical result indicates the superiority of the proposed method compared to the existing ones.
Consistent Sparse Deep Learning: Theory and Computation
Sun, Yan, Song, Qifan, Liang, Faming
Deep learning has been the engine powering many successes of data science. However, the deep neural network (DNN), as the basic model of deep learning, is often excessively over-parameterized, causing many difficulties in training, prediction and interpretation. We propose a frequentist-like method for learning sparse DNNs and justify its consistency under the Bayesian framework: the proposed method could learn a sparse DNN with at most $O(n/\log(n))$ connections and nice theoretical guarantees such as posterior consistency, variable selection consistency and asymptotically optimal generalization bounds. In particular, we establish posterior consistency for the sparse DNN with a mixture Gaussian prior, show that the structure of the sparse DNN can be consistently determined using a Laplace approximation-based marginal posterior inclusion probability approach, and use Bayesian evidence to elicit sparse DNNs learned by an optimization method such as stochastic gradient descent in multiple runs with different initializations. The proposed method is computationally more efficient than standard Bayesian methods for large-scale sparse DNNs. The numerical results indicate that the proposed method can perform very well for large-scale network compression and high-dimensional nonlinear variable selection, both advancing interpretable machine learning.
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Deng, Wei, Lin, Guang, Liang, Faming
We propose an adaptively weighted stochastic gradient Langevin dynamics algorithm (SGLD), so-called contour stochastic gradient Langevin dynamics (CSGLD), for Bayesian learning in big data statistics. The proposed algorithm is essentially a \emph{scalable dynamic importance sampler}, which automatically \emph{flattens} the target distribution such that the simulation for a multi-modal distribution can be greatly facilitated. Theoretically, we prove a stability condition and establish the asymptotic convergence of the self-adapting parameter to a {\it unique fixed-point}, regardless of the non-convexity of the original energy function; we also present an error analysis for the weighted averaging estimators. Empirically, the CSGLD algorithm is tested on multiple benchmark datasets including CIFAR10 and CIFAR100. The numerical results indicate its superiority over the existing state-of-the-art algorithms in training deep neural networks.