Liang, Dawen
Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation
He, Zhankui, Xie, Zhouhang, Steck, Harald, Liang, Dawen, Jha, Rahul, Kallus, Nathan, McAuley, Julian
Large language models (LLMs) are revolutionizing conversational recommender systems by adeptly indexing item content, understanding complex conversational contexts, and generating relevant item titles. However, controlling the distribution of recommended items remains a challenge. This leads to suboptimal performance due to the failure to capture rapidly changing data distributions, such as item popularity, on targeted conversational recommendation platforms. In conversational recommendation, LLMs recommend items by generating the titles (as multiple tokens) autoregressively, making it difficult to obtain and control the recommendations over all items. Thus, we propose a Reindex-Then-Adapt (RTA) framework, which converts multi-token item titles into single tokens within LLMs, and then adjusts the probability distributions over these single-token item titles accordingly. The RTA framework marries the benefits of both LLMs and traditional recommender systems (RecSys): understanding complex queries as LLMs do; while efficiently controlling the recommended item distributions in conversational recommendations as traditional RecSys do. Our framework demonstrates improved accuracy metrics across three different conversational recommendation datasets and two adaptation settings
Switching the Loss Reduces the Cost in Batch Reinforcement Learning
Ayoub, Alex, Wang, Kaiwen, Liu, Vincent, Robertson, Samuel, McInerney, James, Liang, Dawen, Kallus, Nathan, Szepesvรกri, Csaba
In offline reinforcement learning (RL), also known as batch RL, we often want agents that learn how to achieve a goal from a fixed dataset using as few samples as possible. A standard approach in this setting is fitted Q-iteration (FQI) [Ernst et al., 2005], which iteratively minimizes the regression error on the batch dataset. In this work we propose a simple and principled improvement to FQI, using log-loss (FQI-log), and prove that it can achieve a much faster convergence rate. In particular, the number of samples it requires to learn a near-optimal policy scales with the cost of the optimal policy, leading to a so-called small-cost bound, the RL analogue of a small-loss bound in supervised learning. We highlight that FQI-log is the first computationally efficient batch RL algorithm to achieve a small-cost bound.
Risk-Sensitive RL with Optimized Certainty Equivalents via Reduction to Standard RL
Wang, Kaiwen, Liang, Dawen, Kallus, Nathan, Sun, Wen
We study Risk-Sensitive Reinforcement Learning (RSRL) with the Optimized Certainty Equivalent (OCE) risk, which generalizes Conditional Value-at-risk (CVaR), entropic risk and Markowitz's mean-variance. Using an augmented Markov Decision Process (MDP), we propose two general meta-algorithms via reductions to standard RL: one based on optimistic algorithms and another based on policy optimization. Our optimistic meta-algorithm generalizes almost all prior RSRL theory with entropic risk or CVaR. Under discrete rewards, our optimistic theory also certifies the first RSRL regret bounds for MDPs with bounded coverability, e.g., exogenous block MDPs. Under discrete rewards, our policy optimization meta-algorithm enjoys both global convergence and local improvement guarantees in a novel metric that lower bounds the true OCE risk. Finally, we instantiate our framework with PPO, construct an MDP, and show that it learns the optimal risk-sensitive policy while prior algorithms provably fail.
Off-Policy Evaluation for Large Action Spaces via Policy Convolution
Sachdeva, Noveen, Wang, Lequn, Liang, Dawen, Kallus, Nathan, McAuley, Julian
Developing accurate off-policy estimators is crucial for both evaluating and optimizing for new policies. The main challenge in off-policy estimation is the distribution shift between the logging policy that generates data and the target policy that we aim to evaluate. Typically, techniques for correcting distribution shift involve some form of importance sampling. This approach results in unbiased value estimation but often comes with the trade-off of high variance, even in the simpler case of one-step contextual bandits. Furthermore, importance sampling relies on the common support assumption, which becomes impractical when the action space is large. To address these challenges, we introduce the Policy Convolution (PC) family of estimators. These methods leverage latent structure within actions -- made available through action embeddings -- to strategically convolve the logging and target policies. This convolution introduces a unique bias-variance trade-off, which can be controlled by adjusting the amount of convolution. Our experiments on synthetic and benchmark datasets demonstrate remarkable mean squared error (MSE) improvements when using PC, especially when either the action space or policy mismatch becomes large, with gains of up to 5 - 6 orders of magnitude over existing estimators.
Large Language Models as Zero-Shot Conversational Recommenders
He, Zhankui, Xie, Zhouhang, Jha, Rahul, Steck, Harald, Liang, Dawen, Feng, Yesu, Majumder, Bodhisattwa Prasad, Kallus, Nathan, McAuley, Julian
In this paper, we present empirical studies on conversational recommendation tasks using representative large language models in a zero-shot setting with three primary contributions. (1) Data: To gain insights into model behavior in "in-the-wild" conversational recommendation scenarios, we construct a new dataset of recommendation-related conversations by scraping a popular discussion website. This is the largest public real-world conversational recommendation dataset to date. (2) Evaluation: On the new dataset and two existing conversational recommendation datasets, we observe that even without fine-tuning, large language models can outperform existing fine-tuned conversational recommendation models. (3) Analysis: We propose various probing tasks to investigate the mechanisms behind the remarkable performance of large language models in conversational recommendation. We analyze both the large language models' behaviors and the characteristics of the datasets, providing a holistic understanding of the models' effectiveness, limitations and suggesting directions for the design of future conversational recommenders
Local Policy Improvement for Recommender Systems
Liang, Dawen, Vlassis, Nikos
Recommender systems predict what items a user will interact with next, based on their past interactions. The problem is often approached through supervised learning, but recent advancements have shifted towards policy optimization of rewards (e.g., user engagement). One challenge with the latter is policy mismatch: we are only able to train a new policy given data collected from a previously-deployed policy. The conventional way to address this problem is through importance sampling correction, but this comes with practical limitations. We suggest an alternative approach of local policy improvement without off-policy correction. Our method computes and optimizes a lower bound of expected reward of the target policy, which is easy to estimate from data and does not involve density ratios (such as those appearing in importance sampling correction). This local policy improvement paradigm is ideal for recommender systems, as previous policies are typically of decent quality and policies are updated frequently. We provide empirical evidence and practical recipes for applying our technique in a sequential recommendation setting.
Learning Correlated Latent Representations with Adaptive Priors
Tang, Da, Liang, Dawen, Ruozzi, Nicholas, Jebara, Tony
Variational Auto-Encoders (VAEs) have been widely applied for learning compact low-dimensional latent representations for high-dimensional data. When the correlation structure among data points is available, previous work proposed Correlated Variational Auto-Encoders (CVAEs) which employ a structured mixture model as prior and a structured variational posterior for each mixture component to enforce the learned latent representations to follow the same correlation structure. However, as we demonstrate in this paper, such a choice can not guarantee that CVAEs can capture all of the correlations. Furthermore, it prevents us from obtaining a tractable joint and marginal variational distribution. To address these issues, we propose Adaptive Correlated Variational Auto-Encoders (ACVAEs), which apply an adaptive prior distribution that can be adjusted during training, and learn a tractable joint distribution via a saddle-point optimization procedure. Its tractable form also enables further refinement with belief propagation. Experimental results on two real datasets show that ACVAEs outperform other benchmarks significantly.
Correlated Variational Auto-Encoders
Tang, Da, Liang, Dawen, Jebara, Tony, Ruozzi, Nicholas
Variational Auto-Encoders (VAEs) are capable of learning latent representations for high dimensional data. However, due to the i.i.d. assumption, VAEs only optimize the singleton variational distributions and fail to account for the correlations between data points, which might be crucial for learning latent representations from dataset where a priori we know correlations exist. We propose Correlated Variational Auto-Encoders (CVAEs) that can take the correlation structure into consideration when learning latent representations with VAEs. CVAEs apply a prior based on the correlation structure. To address the intractability introduced by the correlated prior, we develop an approximation by average of a set of tractable lower bounds over all maximal acyclic subgraphs of the undirected correlation graph. Experimental results on matching and link prediction on public benchmark rating datasets and spectral clustering on a synthetic dataset show the effectiveness of the proposed method over baseline algorithms.
The Deconfounded Recommender: A Causal Inference Approach to Recommendation
Wang, Yixin, Liang, Dawen, Charlin, Laurent, Blei, David M.
The goal of a recommender system is to show its users items that they will like. In forming its prediction, the recommender system tries to answer: "what would the rating be if we 'forced' the user to watch the movie?" This is a question about an intervention in the world, a causal question, and so traditional recommender systems are doing causal inference from observational data. This paper develops a causal inference approach to recommendation. Traditional recommenders are likely biased by unobserved confounders, variables that affect both the "treatment assignments" (which movies the users watch) and the "outcomes" (how they rate them). We develop the deconfounded recommender, a strategy to leverage classical recommendation models for causal predictions. The deconfounded recommender uses Poisson factorization on which movies users watched to infer latent confounders in the data; it then augments common recommendation models to correct for potential confounding bias. The deconfounded recommender improves recommendation and it enjoys stable performance against interventions on test sets.
Variational Autoencoders for Collaborative Filtering
Liang, Dawen, Krishnan, Rahul G., Hoffman, Matthew D., Jebara, Tony
We extend variational autoencoders (VAEs) to collaborative filtering for implicit feedback. This non-linear probabilistic model enables us to go beyond the limited modeling capacity of linear factor models which still largely dominate collaborative filtering research.We introduce a generative model with multinomial likelihood and use Bayesian inference for parameter estimation. Despite widespread use in language modeling and economics, the multinomial likelihood receives less attention in the recommender systems literature. We introduce a different regularization parameter for the learning objective, which proves to be crucial for achieving competitive performance. Remarkably, there is an efficient way to tune the parameter using annealing. The resulting model and learning algorithm has information-theoretic connections to maximum entropy discrimination and the information bottleneck principle. Empirically, we show that the proposed approach significantly outperforms several state-of-the-art baselines, including two recently-proposed neural network approaches, on several real-world datasets. We also provide extended experiments comparing the multinomial likelihood with other commonly used likelihood functions in the latent factor collaborative filtering literature and show favorable results. Finally, we identify the pros and cons of employing a principled Bayesian inference approach and characterize settings where it provides the most significant improvements.