Goto

Collaborating Authors

 Liang, Christy


A Non-Monolithic Policy Approach of Offline-to-Online Reinforcement Learning

arXiv.org Artificial Intelligence

Offline-to-online reinforcement learning (RL) leverages both pre-trained offline policies and online policies trained for downstream tasks, aiming to improve data efficiency and accelerate performance enhancement. An existing approach, Policy Expansion (PEX), utilizes a policy set composed of both policies without modifying the offline policy for exploration and learning. However, this approach fails to ensure sufficient learning of the online policy due to an excessive focus on exploration with both policies. Since the pre-trained offline policy can assist the online policy in exploiting a downstream task based on its prior experience, it should be executed effectively and tailored to the specific requirements of the downstream task. In contrast, the online policy, with its immature behavioral strategy, has the potential for exploration during the training phase. Therefore, our research focuses on harmonizing the advantages of the offline policy, termed exploitation, with those of the online policy, referred to as exploration, without modifying the offline policy. In this study, we propose an innovative offline-to-online RL method that employs a non-monolithic exploration approach. Our methodology demonstrates superior performance compared to PEX. The code for this comparison is readily available.


Decoupling Exploration and Exploitation for Unsupervised Pre-training with Successor Features

arXiv.org Artificial Intelligence

Unsupervised pre-training has been on the lookout for the virtue of a value function representation referred to as successor features (SFs), which decouples the dynamics of the environment from the rewards. It has a significant impact on the process of task-specific fine-tuning due to the decomposition. However, existing approaches struggle with local optima due to the unified intrinsic reward of exploration and exploitation without considering the linear regression problem and the discriminator supporting a small skill sapce. We propose a novel unsupervised pre-training model with SFs based on a non-monolithic exploration methodology. Our approach pursues the decomposition of exploitation and exploration of an agent built on SFs, which requires separate agents for the respective purpose. The idea will leverage not only the inherent characteristics of SFs such as a quick adaptation to new tasks but also the exploratory and task-agnostic capabilities. Our suggested model is termed Non-Monolithic unsupervised Pre-training with Successor features (NMPS), which improves the performance of the original monolithic exploration method of pre-training with SFs. NMPS outperforms Active Pre-training with Successor Features (APS) in a comparative experiment.


An Autonomous Non-monolithic Agent with Multi-mode Exploration based on Options Framework

arXiv.org Artificial Intelligence

Most exploration research on reinforcement learning (RL) has paid attention to `the way of exploration', which is `how to explore'. The other exploration research, `when to explore', has not been the main focus of RL exploration research. The issue of `when' of a monolithic exploration in the usual RL exploration behaviour binds an exploratory action to an exploitational action of an agent. Recently, a non-monolithic exploration research has emerged to examine the mode-switching exploration behaviour of humans and animals. The ultimate purpose of our research is to enable an agent to decide when to explore or exploit autonomously. We describe the initial research of an autonomous multi-mode exploration of non-monolithic behaviour in an options framework. The higher performance of our method is shown against the existing non-monolithic exploration method through comparative experimental results.