Liang, Chao
Noise-Tolerant Hybrid Prototypical Learning with Noisy Web Data
Liang, Chao, Zhu, Linchao, Yang, Zongxin, Chen, Wei, Yang, Yi
We focus on the challenging problem of learning an unbiased classifier from a large number of potentially relevant but noisily labeled web images given only a few clean labeled images. This problem is particularly practical because it reduces the expensive annotation costs by utilizing freely accessible web images with noisy labels. Typically, prototypes are representative images or features used to classify or identify other images. However, in the few clean and many noisy scenarios, the class prototype can be severely biased due to the presence of irrelevant noisy images. The resulting prototypes are less compact and discriminative, as previous methods do not take into account the diverse range of images in the noisy web image collections. On the other hand, the relation modeling between noisy and clean images is not learned for the class prototype generation in an end-to-end manner, which results in a suboptimal class prototype. In this article, we introduce a similarity maximization loss named SimNoiPro. Our SimNoiPro first generates noise-tolerant hybrid prototypes composed of clean and noise-tolerant prototypes and then pulls them closer to each other. Our approach considers the diversity of noisy images by explicit division and overcomes the optimization discrepancy issue. This enables better relation modeling between clean and noisy images and helps extract judicious information from the noisy image set. The evaluation results on two extended few-shot classification benchmarks confirm that our SimNoiPro outperforms prior methods in measuring image relations and cleaning noisy data.
FADA: Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation
Zhong, Tianyun, Liang, Chao, Jiang, Jianwen, Lin, Gaojie, Yang, Jiaqi, Zhao, Zhou
Diffusion-based audio-driven talking avatar methods have recently gained attention for their high-fidelity, vivid, and expressive results. However, their slow inference speed limits practical applications. Despite the development of various distillation techniques for diffusion models, we found that naive diffusion distillation methods do not yield satisfactory results. Distilled models exhibit reduced robustness with open-set input images and a decreased correlation between audio and video compared to teacher models, undermining the advantages of diffusion models. To address this, we propose FADA (Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation). We first designed a mixed-supervised loss to leverage data of varying quality and enhance the overall model capability as well as robustness. Additionally, we propose a multi-CFG distillation with learnable tokens to utilize the correlation between audio and reference image conditions, reducing the threefold inference runs caused by multi-CFG with acceptable quality degradation. Extensive experiments across multiple datasets show that FADA generates vivid videos comparable to recent diffusion model-based methods while achieving an NFE speedup of 4.17-12.5 times. Demos are available at our webpage http://fadavatar.github.io.
Decoding Urban Industrial Complexity: Enhancing Knowledge-Driven Insights via IndustryScopeGPT
Wang, Siqi, Liang, Chao, Gao, Yunfan, Liu, Yang, Li, Jing, Wang, Haofen
Industrial parks are critical to urban economic growth. Yet, their development often encounters challenges stemming from imbalances between industrial requirements and urban services, underscoring the need for strategic planning and operations. This paper introduces IndustryScopeKG, a pioneering large-scale multi-modal, multi-level industrial park knowledge graph, which integrates diverse urban data including street views, corporate, socio-economic, and geospatial information, capturing the complex relationships and semantics within industrial parks. Alongside this, we present the IndustryScopeGPT framework, which leverages Large Language Models (LLMs) with Monte Carlo Tree Search to enhance tool-augmented reasoning and decision-making in Industrial Park Planning and Operation (IPPO). Our work significantly improves site recommendation and functional planning, demonstrating the potential of combining LLMs with structured datasets to advance industrial park management. This approach sets a new benchmark for intelligent IPPO research and lays a robust foundation for advancing urban industrial development. The dataset and related code are available at https://github.com/Tongji-KGLLM/IndustryScope.
What Would Happen Next? Predicting Consequences from An Event Causality Graph
Zhan, Chuanhong, Xiang, Wei, Liang, Chao, Wang, Bang
Existing script event prediction task forcasts the subsequent event based on an event script chain. However, the evolution of historical events are more complicated in real world scenarios and the limited information provided by the event script chain also make it difficult to accurately predict subsequent events. This paper introduces a Causality Graph Event Prediction(CGEP) task that forecasting consequential event based on an Event Causality Graph (ECG). We propose a Semantic Enhanced Distance-sensitive Graph Prompt Learning (SeDGPL) Model for the CGEP task. In SeDGPL, (1) we design a Distance-sensitive Graph Linearization (DsGL) module to reformulate the ECG into a graph prompt template as the input of a PLM; (2) propose an Event-Enriched Causality Encoding (EeCE) module to integrate both event contextual semantic and graph schema information; (3) propose a Semantic Contrast Event Prediction (ScEP) module to enhance the event representation among numerous candidate events and predict consequential event following prompt learning paradigm. %We construct two CGEP datasets based on existing MAVEN-ERE and ESC corpus for experiments. Experiment results validate our argument our proposed SeDGPL model outperforms the advanced competitors for the CGEP task.
MobilePortrait: Real-Time One-Shot Neural Head Avatars on Mobile Devices
Jiang, Jianwen, Lin, Gaojie, Rong, Zhengkun, Liang, Chao, Zhu, Yongming, Yang, Jiaqi, Zhong, Tianyun
Existing neural head avatars methods have achieved significant progress in the image quality and motion range of portrait animation. However, these methods neglect the computational overhead, and to the best of our knowledge, none is designed to run on mobile devices. This paper presents MobilePortrait, a lightweight one-shot neural head avatars method that reduces learning complexity by integrating external knowledge into both the motion modeling and image synthesis, enabling real-time inference on mobile devices. Specifically, we introduce a mixed representation of explicit and implicit keypoints for precise motion modeling and precomputed visual features for enhanced foreground and background synthesis. With these two key designs and using simple U-Nets as backbones, our method achieves state-of-the-art performance with less than one-tenth the computational demand. It has been validated to reach speeds of over 100 FPS on mobile devices and support both video and audio-driven inputs.
In-context Contrastive Learning for Event Causality Identification
Liang, Chao, Xiang, Wei, Wang, Bang
Event Causality Identification (ECI) aims at determining the existence of a causal relation between two events. Although recent prompt learning-based approaches have shown promising improvements on the ECI task, their performance are often subject to the delicate design of multiple prompts and the positive correlations between the main task and derivate tasks. The in-context learning paradigm provides explicit guidance for label prediction in the prompt learning paradigm, alleviating its reliance on complex prompts and derivative tasks. However, it does not distinguish between positive and negative demonstrations for analogy learning. Motivated from such considerations, this paper proposes an In-Context Contrastive Learning (ICCL) model that utilizes contrastive learning to enhance the effectiveness of both positive and negative demonstrations. Additionally, we apply contrastive learning to event pairs to better facilitate event causality identification. Our ICCL is evaluated on the widely used corpora, including the EventStoryLine and Causal-TimeBank, and results show significant performance improvements over the state-of-the-art algorithms.
CapHuman: Capture Your Moments in Parallel Universes
Liang, Chao, Ma, Fan, Zhu, Linchao, Deng, Yingying, Yang, Yi
We concentrate on a novel human-centric image synthesis task, that is, given only one reference facial photograph, it is expected to generate specific individual images with diverse head positions, poses, and facial expressions in different contexts. To accomplish this goal, we argue that our generative model should be capable of the following favorable characteristics: (1) a strong visual and semantic understanding of our world and human society for basic object and human image generation. (2) generalizable identity preservation ability. (3) flexible and fine-grained head control. Recently, large pre-trained text-to-image diffusion models have shown remarkable results, serving as a powerful generative foundation. As a basis, we aim to unleash the above two capabilities of the pre-trained model. In this work, we present a new framework named CapHuman. We embrace the ``encode then learn to align" paradigm, which enables generalizable identity preservation for new individuals without cumbersome tuning at inference. CapHuman encodes identity features and then learns to align them into the latent space. Moreover, we introduce the 3D facial prior to equip our model with control over the human head in a flexible and 3D-consistent manner. Extensive qualitative and quantitative analyses demonstrate our CapHuman can produce well-identity-preserved, photo-realistic, and high-fidelity portraits with content-rich representations and various head renditions, superior to established baselines. Code and checkpoint will be released at https://github.com/VamosC/CapHuman.
HDTR-Net: A Real-Time High-Definition Teeth Restoration Network for Arbitrary Talking Face Generation Methods
Li, Yongyuan, Qin, Xiuyuan, Liang, Chao, Wei, Mingqiang
Talking Face Generation (TFG) aims to reconstruct facial movements to achieve high natural lip movements from audio and facial features that are under potential connections. Existing TFG methods have made significant advancements to produce natural and realistic images. However, most work rarely takes visual quality into consideration. It is challenging to ensure lip synchronization while avoiding visual quality degradation in cross-modal generation methods. To address this issue, we propose a universal High-Definition Teeth Restoration Network, dubbed HDTR-Net, for arbitrary TFG methods. HDTR-Net can enhance teeth regions at an extremely fast speed while maintaining synchronization, and temporal consistency. In particular, we propose a Fine-Grained Feature Fusion (FGFF) module to effectively capture fine texture feature information around teeth and surrounding regions, and use these features to fine-grain the feature map to enhance the clarity of teeth. Extensive experiments show that our method can be adapted to arbitrary TFG methods without suffering from lip synchronization and frame coherence. Another advantage of HDTR-Net is its real-time generation ability. Also under the condition of high-definition restoration of talking face video synthesis, its inference speed is $300\%$ faster than the current state-of-the-art face restoration based on super-resolution.
TEPrompt: Task Enlightenment Prompt Learning for Implicit Discourse Relation Recognition
Xiang, Wei, Liang, Chao, Wang, Bang
Implicit Discourse Relation Recognition (IDRR) aims at classifying the relation sense between two arguments without an explicit connective. Recently, the ConnPrompt~\cite{Wei.X:et.al:2022:COLING} has leveraged the powerful prompt learning for IDRR based on the fusion of multi-prompt decisions from three different yet much similar connective prediction templates. Instead of multi-prompt ensembling, we propose to design auxiliary tasks with enlightened prompt learning for the IDRR task. Although an auxiliary task is not used to directly output final prediction, we argue that during the joint training some of its learned features can be useful to boost the main task. In light of such motivations, we propose a task enlightenment prompt learning model, called TEPrompt, to fuse learned features from three related tasks for IDRR. In particular, the TEPrompt contains three tasks, viz., Discourse Relation Recognition (DRR), Sense Semantics Classification (SSC) and Annotated Connective Prediction (ACP), each with a unique prompt template and an answer space. In the training phase, we jointly train three prompt learning tasks with shared argument representation. In the testing phase, we only take the DRR output with fused features as the final IDRR decision. Experiments with the same conditions have shown that the proposed TEPrompt outperforms the ConnPrompt. This can be attributed to the promoted decision features and language models benefited from joint-training of auxiliary tasks.
Feature Robust Optimal Transport for High-dimensional Data
Petrovich, Mathis, Liang, Chao, Sato, Ryoma, Liu, Yanbin, Tsai, Yao-Hung Hubert, Zhu, Linchao, Yang, Yi, Salakhutdinov, Ruslan, Yamada, Makoto
Optimal transport is a machine learning problem with applications including distribution comparison, feature selection, and generative adversarial networks. In this paper, we propose feature-robust optimal transport (FROT) for high-dimensional data, which solves high-dimensional OT problems using feature selection to avoid the curse of dimensionality. Specifically, we find a transport plan with discriminative features. To this end, we formulate the FROT problem as a min--max optimization problem. We then propose a convex formulation of the FROT problem and solve it using a Frank--Wolfe-based optimization algorithm, whereby the subproblem can be efficiently solved using the Sinkhorn algorithm. Since FROT finds the transport plan from selected features, it is robust to noise features. To show the effectiveness of FROT, we propose using the FROT algorithm for the layer selection problem in deep neural networks for semantic correspondence. By conducting synthetic and benchmark experiments, we demonstrate that the proposed method can find a strong correspondence by determining important layers. We show that the FROT algorithm achieves state-of-the-art performance in real-world semantic correspondence datasets.