Goto

Collaborating Authors

 Li, Ziyu


Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification

arXiv.org Artificial Intelligence

Few-shot image classification has become a popular research topic for its wide application in real-world scenarios, however the problem of supervision collapse induced by single image-level annotation remains a major challenge. Existing methods aim to tackle this problem by locating and aligning relevant local features. However, the high intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings. Drawing inspiration from the human's complementary learning system, which excels at rapidly capturing and integrating semantic features from limited examples, we propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net. This approach simulates the systems consolidation of complementary learning system with an adaptive memory module, which successfully addresses the difficulty of identifying meaningful features in few-shot scenarios. Specifically, we construct a Hippocampus-Neocortex dual-network that consolidates structured representation of each category, the structured representation is then stored and adaptively regulated following the generalization optimization principle in a long-term memory inside Neocortex. Extensive experiments on benchmark datasets show that the proposed model has achieved state-of-the-art performance.


De-biased Multimodal Electrocardiogram Analysis

arXiv.org Artificial Intelligence

Multimodal large language models (MLLMs) are increasingly being applied in the medical field, particularly in medical imaging. However, developing MLLMs for ECG signals, which are crucial in clinical settings, has been a significant challenge beyond medical imaging. Previous studies have attempted to address this by converting ECGs into several text tags using an external classifier in a training-free manner. However, this approach significantly compresses the information in ECGs and underutilizes the reasoning capabilities of LLMs. In this work, we directly feed the embeddings of ECGs into the LLM through a projection layer, retaining more information about ECGs and better leveraging the reasoning abilities of LLMs. Our method can also effectively handle a common situation in clinical practice where it is necessary to compare two ECGs taken at different times. Recent studies found that MLLMs may rely solely on text input to provide answers, ignoring inputs from other modalities. We analyzed this phenomenon from a causal perspective in the context of ECG MLLMs and discovered that the confounder, severity of illness, introduces a spurious correlation between the question and answer, leading the model to rely on this spurious correlation and ignore the ECG input. Such models do not comprehend the ECG input and perform poorly in adversarial tests where different expressions of the same question are used in the training and testing sets. We designed a de-biased pre-training method to eliminate the confounder's effect according to the theory of backdoor adjustment. Our model performed well on the ECG-QA task under adversarial testing and demonstrated zero-shot capabilities. An interesting random ECG test further validated that our model effectively understands and utilizes the input ECG signal.


Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study

arXiv.org Artificial Intelligence

Cardiovascular diseases (CVDs) present significant challenges for early and accurate diagnosis. While cardiac magnetic resonance imaging (CMR) is the gold standard for assessing cardiac function and diagnosing CVDs, its high cost and technical complexity limit accessibility. In contrast, electrocardiography (ECG) offers promise for large-scale early screening. This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR through cross-modal contrastive learning and generative pretraining. CardiacNets serves two primary functions: (1) it evaluates detailed cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension, using ECG input; and (2) it enhances interpretability by generating high-quality CMR images from ECG data. We train and validate the proposed CardiacNets on two large-scale public datasets (the UK Biobank with 41,519 individuals and the MIMIC-IV-ECG comprising 501,172 samples) as well as three private datasets (FAHZU with 410 individuals, SAHZU with 464 individuals, and QPH with 338 individuals), and the findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy. Furthermore, the generated CMR images provide valuable diagnostic support for physicians of all experience levels. This proof-of-concept study highlights how ECG can facilitate cross-modal insights into cardiac function assessment, paving the way for enhanced CVD screening and diagnosis at a population level.


CEBench: A Benchmarking Toolkit for the Cost-Effectiveness of LLM Pipelines

arXiv.org Artificial Intelligence

Online Large Language Model (LLM) services such as ChatGPT and Claude 3 have transformed business operations and academic research by effortlessly enabling new opportunities. However, due to data-sharing restrictions, sectors such as healthcare and finance prefer to deploy local LLM applications using costly hardware resources. This scenario requires a balance between the effectiveness advantages of LLMs and significant financial burdens. Additionally, the rapid evolution of models increases the frequency and redundancy of benchmarking efforts. Existing benchmarking toolkits, which typically focus on effectiveness, often overlook economic considerations, making their findings less applicable to practical scenarios. To address these challenges, we introduce CEBench, an open-source toolkit specifically designed for multi-objective benchmarking that focuses on the critical trade-offs between expenditure and effectiveness required for LLM deployments. CEBench allows for easy modifications through configuration files, enabling stakeholders to effectively assess and optimize these trade-offs. This strategic capability supports crucial decision-making processes aimed at maximizing effectiveness while minimizing cost impacts. By streamlining the evaluation process and emphasizing cost-effectiveness, CEBench seeks to facilitate the development of economically viable AI solutions across various industries and research fields. The code and demonstration are available in \url{https://github.com/amademicnoboday12/CEBench}.


Enhance the Image: Super Resolution using Artificial Intelligence in MRI

arXiv.org Artificial Intelligence

Abstract: This chapter provides an overview of deep learning techniques for improving the spatial resolution of MRI, ranging from convolutional neural networks, generative adversarial networks, to more advanced models including transformers, diffusion models, and implicit neural representations. Our exploration extends beyond the methodologies to scrutinize the impact of super-resolved images on clinical and neuroscientific assessments. We also cover various practical topics such as network architectures, image evaluation metrics, network loss functions, and training data specifics--including downsampling methods for simulating lowresolution images and dataset selection. Finally, we discuss existing challenges and potential future directions regarding the feasibility and reliability of deep learning-based MRI superresolution, with the aim to facilitate its wider adoption to benefit various clinical and neuroscientific applications. Keywords: Single-image super-resolution, deep learning, convolutional neural network, generative adversarial network, transformer, diffusion model, implicit neural representation, loss function, transfer learning, uncertainty estimation. Introduction MRI with higher spatial resolution provides more detailed insights into the structure and function of living human bodies non-invasively, which is highly desirable for accurate clinical diagnosis and image analysis. The spatial resolution of MRI is characterized by in-plane and through-plane resolutions (Figure 1). On the other hand, the through-plane resolution, also referred to as slice thickness, is determined differently for 2D and 3D imaging. In 2D imaging, the slice thickness is defined by the full width at half maximum (FWHM) of the slice-selection radiofrequency (RF) pulse profile. In 3D imaging, the slice-selection direction is encoded by another phase encoding gradient. Consequently, the through-plane resolution is determined similarly to the in-plane resolution by the maximal extent of the k-space along slice-selection direction as in Eq. 1. The in-plane resolution is dictated by the k-space coverage, and a larger k-space coverage brings higher spatial resolution (a). The slice thickness is determined by the slice-selective RF pulse for 2D imaging, and by k-space extent along sliceselection direction for 3D imaging (b).


Artificial Intelligence for Neuro MRI Acquisition: A Review

arXiv.org Artificial Intelligence

Magnetic resonance imaging (MRI) has significantly benefited from the resurgence of artificial intelligence (AI). By leveraging AI's capabilities in large-scale optimization and pattern recognition, innovative methods are transforming the MRI acquisition workflow, including planning, sequence design, and correction of acquisition artifacts. These emerging algorithms demonstrate substantial potential in enhancing the efficiency and throughput of acquisition steps.


Model Selection with Model Zoo via Graph Learning

arXiv.org Artificial Intelligence

Pre-trained deep learning (DL) models are increasingly accessible in public repositories, i.e., model zoos. Given a new prediction task, finding the best model to fine-tune can be computationally intensive and costly, especially when the number of pre-trained models is large. Selecting the right pre-trained models is crucial, yet complicated by the diversity of models from various model families (like ResNet, Vit, Swin) and the hidden relationships between models and datasets. Existing methods, which utilize basic information from models and datasets to compute scores indicating model performance on target datasets, overlook the intrinsic relationships, limiting their effectiveness in model selection. In this study, we introduce TransferGraph, a novel framework that reformulates model selection as a graph learning problem. TransferGraph constructs a graph using extensive metadata extracted from models and datasets, while capturing their inherent relationships. Through comprehensive experiments across 16 real datasets, both images and texts, we demonstrate TransferGraph's effectiveness in capturing essential model-dataset relationships, yielding up to a 32% improvement in correlation between predicted performance and the actual fine-tuning results compared to the state-of-the-art methods.


Mutation-based Consistency Testing for Evaluating the Code Understanding Capability of LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown remarkable capabilities in processing both natural and programming languages, which have enabled various applications in software engineering, such as requirement engineering, code generation, and software testing. However, existing code generation benchmarks do not necessarily assess the code understanding performance of LLMs, especially for the subtle inconsistencies that may arise between code and its semantics described in natural language. In this paper, we propose a novel method to systematically assess the code understanding performance of LLMs, particularly focusing on subtle differences between code and its descriptions, by introducing code mutations to existing code generation datasets. Code mutations are small changes that alter the semantics of the original code, creating a mismatch with the natural language description. We apply different types of code mutations, such as operator replacement and statement deletion, to generate inconsistent code-description pairs. We then use these pairs to test the ability of LLMs to correctly detect the inconsistencies. We propose a new LLM testing method, called Mutation-based Consistency Testing (MCT), and conduct a case study on the two popular LLMs, GPT-3.5 and GPT-4, using the state-of-the-art code generation benchmark, HumanEval-X, which consists of six programming languages (Python, C++, Java, Go, JavaScript, and Rust). We compare the performance of the LLMs across different types of code mutations and programming languages and analyze the results. We find that the LLMs show significant variation in their code understanding performance and that they have different strengths and weaknesses depending on the mutation type and language.


Quantifying the uncertainty of neural networks using Monte Carlo dropout for deep learning based quantitative MRI

arXiv.org Artificial Intelligence

Dropout is conventionally used during the training phase as regularization method and for quantifying uncertainty in deep learning. We propose to use dropout during training as well as inference steps, and average multiple predictions to improve the accuracy, while reducing and quantifying the uncertainty. The results are evaluated for fractional anisotropy (FA) and mean diffusivity (MD) maps which are obtained from only 3 direction scans. With our method, accuracy can be improved significantly compared to network outputs without dropout, especially when the training dataset is small. Moreover, confidence maps are generated which may aid in diagnosis of unseen pathology or artifacts.