Goto

Collaborating Authors

 Li, Zhong


Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions

arXiv.org Artificial Intelligence

In recent years, generative models have achieved remarkable performance across diverse applications, including image generation, text synthesis, audio creation, video generation, and data augmentation. Diffusion models have emerged as superior alternatives to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) by addressing their limitations, such as training instability, mode collapse, and poor representation of multimodal distributions. This success has spurred widespread research interest. In the domain of tabular data, diffusion models have begun to showcase similar advantages over GANs and VAEs, achieving significant performance breakthroughs and demonstrating their potential for addressing unique challenges in tabular data modeling. However, while domains like images and time series have numerous surveys summarizing advancements in diffusion models, there remains a notable gap in the literature for tabular data. Despite the increasing interest in diffusion models for tabular data, there has been little effort to systematically review and summarize these developments. This lack of a dedicated survey limits a clear understanding of the challenges, progress, and future directions in this critical area. This survey addresses this gap by providing a comprehensive review of diffusion models for tabular data. Covering works from June 2015, when diffusion models emerged, to December 2024, we analyze nearly all relevant studies, with updates maintained in a \href{https://github.com/Diffusion-Model-Leiden/awesome-diffusion-models-for-tabular-data}{GitHub repository}. Assuming readers possess foundational knowledge of statistics and diffusion models, we employ mathematical formulations to deliver a rigorous and detailed review, aiming to promote developments in this emerging and exciting area.


Towards Automated Self-Supervised Learning for Truly Unsupervised Graph Anomaly Detection

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory signals generated from the data itself, and many recent studies have leveraged SSL to conduct graph anomaly detection. However, we empirically found that three important factors can substantially impact detection performance across datasets: 1) the specific SSL strategy employed; 2) the tuning of the strategy's hyperparameters; and 3) the allocation of combination weights when using multiple strategies. Most SSL-based graph anomaly detection methods circumvent these issues by arbitrarily or selectively (i.e., guided by label information) choosing SSL strategies, hyperparameter settings, and combination weights. While an arbitrary choice may lead to subpar performance, using label information in an unsupervised setting is label information leakage and leads to severe overestimation of a method's performance. Leakage has been criticized as "one of the top ten data mining mistakes", yet many recent studies on SSL-based graph anomaly detection have been using label information to select hyperparameters. To mitigate this issue, we propose to use an internal evaluation strategy (with theoretical analysis) to select hyperparameters in SSL for unsupervised anomaly detection. We perform extensive experiments using 10 recent SSL-based graph anomaly detection algorithms on various benchmark datasets, demonstrating both the prior issues with hyperparameter selection and the effectiveness of our proposed strategy.


Explainable Graph Neural Networks Under Fire

arXiv.org Artificial Intelligence

Predictions made by graph neural networks (GNNs) usually lack interpretability due to their complex computational behavior and the abstract nature of graphs. In an attempt to tackle this, many GNN explanation methods have emerged. Their goal is to explain a model's predictions and thereby obtain trust when GNN models are deployed in decision critical applications. Most GNN explanation methods work in a post-hoc manner and provide explanations in the form of a small subset of important edges and/or nodes. In this paper we demonstrate that these explanations can unfortunately not be trusted, as common GNN explanation methods turn out to be highly susceptible to adversarial perturbations. That is, even small perturbations of the original graph structure that preserve the model's predictions may yield drastically different explanations. This calls into question the trustworthiness and practical utility of post-hoc explanation methods for GNNs. To be able to attack GNN explanation models, we devise a novel attack method dubbed \textit{GXAttack}, the first \textit{optimization-based} adversarial attack method for post-hoc GNN explanations under such settings. Due to the devastating effectiveness of our attack, we call for an adversarial evaluation of future GNN explainers to demonstrate their robustness.


Generalized Laplace Approximation

arXiv.org Machine Learning

In recent years, the inconsistency in Bayesian deep learning has garnered increasing attention. Tempered or generalized posterior distributions often offer a direct and effective solution to this issue. However, understanding the underlying causes and evaluating the effectiveness of generalized posteriors remain active areas of research. In this study, we introduce a unified theoretical framework to attribute Bayesian inconsistency to model misspecification and inadequate priors. We interpret the generalization of the posterior with a temperature factor as a correction for misspecified models through adjustments to the joint probability model, and the recalibration of priors by redistributing probability mass on models within the hypothesis space using data samples. Additionally, we highlight a distinctive feature of Laplace approximation, which ensures that the generalized normalizing constant can be treated as invariant, unlike the typical scenario in general Bayesian learning where this constant varies with model parameters post-generalization. Building on this insight, we propose the generalized Laplace approximation, which involves a simple adjustment to the computation of the Hessian matrix of the regularized loss function. This method offers a flexible and scalable framework for obtaining high-quality posterior distributions. We assess the performance and properties of the generalized Laplace approximation on state-of-the-art neural networks and real-world datasets.


Inverse Approximation Theory for Nonlinear Recurrent Neural Networks

arXiv.org Artificial Intelligence

We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in https://github.com/radarFudan/Curse-of-memory


Graph Neural Networks based Log Anomaly Detection and Explanation

arXiv.org Artificial Intelligence

Event logs are widely used to record the status of high-tech systems, making log anomaly detection important for monitoring those systems. Most existing log anomaly detection methods take a log event count matrix or log event sequences as input, exploiting quantitative and/or sequential relationships between log events to detect anomalies. Unfortunately, only considering quantitative or sequential relationships may result in low detection accuracy. To alleviate this problem, we propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs, which first converts event logs into attributed, directed, and weighted graphs, and then leverages graph neural networks to perform graph-level anomaly detection. Specifically, we introduce One-Class Digraph Inception Convolutional Networks, abbreviated as OCDiGCN, a novel graph neural network model for detecting graph-level anomalies in a collection of attributed, directed, and weighted graphs. By coupling the graph representation and anomaly detection steps, OCDiGCN can learn a representation that is especially suited for anomaly detection, resulting in a high detection accuracy. Importantly, for each identified anomaly, we additionally provide a small subset of nodes that play a crucial role in OCDiGCN's prediction as explanations, which can offer valuable cues for subsequent root cause diagnosis. Experiments on five benchmark datasets show that Logs2Graphs performs at least on par with state-of-the-art log anomaly detection methods on simple datasets while largely outperforming state-of-the-art log anomaly detection methods on complicated datasets.


TechGPT-2.0: A large language model project to solve the task of knowledge graph construction

arXiv.org Artificial Intelligence

Large language models have exhibited robust performance across diverse natural language processing tasks. This report introduces TechGPT-2.0, a project designed to enhance the capabilities of large language models specifically in knowledge graph construction tasks, including named entity recognition (NER) and relationship triple extraction (RTE) tasks in NLP applications. Additionally, it serves as a LLM accessible for research within the Chinese open-source model community. We offer two 7B large language model weights and a QLoRA weight specialized for processing lengthy texts.Notably, TechGPT-2.0 is trained on Huawei's Ascend server. Inheriting all functionalities from TechGPT-1.0, it exhibits robust text processing capabilities, particularly in the domains of medicine and law. Furthermore, we introduce new capabilities to the model, enabling it to process texts in various domains such as geographical areas, transportation, organizations, literary works, biology, natural sciences, astronomical objects, and architecture. These enhancements also fortified the model's adeptness in handling hallucinations, unanswerable queries, and lengthy texts. This report provides a comprehensive and detailed introduction to the full fine-tuning process on Huawei's Ascend servers, encompassing experiences in Ascend server debugging, instruction fine-tuning data processing, and model training. Our code is available at https://github.com/neukg/TechGPT-2.0


On the Generalization Properties of Diffusion Models

arXiv.org Machine Learning

Diffusion models are a class of generative models that serve to establish a stochastic transport map between an empirically observed, yet unknown, target distribution and a known prior. Despite their remarkable success in real-world applications, a theoretical understanding of their generalization capabilities remains underdeveloped. This work embarks on a comprehensive theoretical exploration of the generalization attributes of diffusion models. We establish theoretical estimates of the generalization gap that evolves in tandem with the training dynamics of score-based diffusion models, suggesting a polynomially small generalization error ($O(n^{-2/5}+m^{-4/5})$) on both the sample size $n$ and the model capacity $m$, evading the curse of dimensionality (i.e., not exponentially large in the data dimension) when early-stopped. Furthermore, we extend our quantitative analysis to a data-dependent scenario, wherein target distributions are portrayed as a succession of densities with progressively increasing distances between modes. This precisely elucidates the adverse effect of "modes shift" in ground truths on the model generalization. Moreover, these estimates are not solely theoretical constructs but have also been confirmed through numerical simulations. Our findings contribute to the rigorous understanding of diffusion models' generalization properties and provide insights that may guide practical applications.


NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions

arXiv.org Artificial Intelligence

We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.


Explainable Contextual Anomaly Detection using Quantile Regression Forests

arXiv.org Artificial Intelligence

Chandola et al (2009) subdivided anomalies into three types: point anomalies (an object is considered anomalous when compared against the rest of objects), contextual anomalies (an object is anomalous in a specific context), and collective anomalies (a collection of objects is anomalous with respect to the entire dataset). The analysis of anomalies has a wide range of applications, such as in network security (Ahmed et al, 2016a), bioinformatics (Spinosa and Carvalho, 2005), fraud detection (Ahmed et al, 2016b), and fault detection and isolation (Hwang et al, 2009). Anomaly analysis consists of two equally important tasks: anomaly detection and anomaly explanation. A wealth of'shallow' machine learning based methods, i.e., not based on deep learning, have been proposed to detect anomalies (Chandola et al, 2009). More recently, many deep learning based anomaly detection methods have also been developed (Pang et al, 2021). However, deep learning based anomaly detection methods are notoriously known as not being interpretable, in the sense that generally both the model itself is non-transparent and the resulting anomaly scores are challenging to interpret without the use of a post-hoc explainer.