Li, Zhenyu
COMM:Concentrated Margin Maximization for Robust Document-Level Relation Extraction
Duan, Zhichao, Pan, Tengyu, Li, Zhenyu, Li, Xiuxing, Wang, Jianyong
Document-level relation extraction (DocRE) is the process of identifying and extracting relations between entities that span multiple sentences within a document. Due to its realistic settings, DocRE has garnered increasing research attention in recent years. Previous research has mostly focused on developing sophisticated encoding models to better capture the intricate patterns between entity pairs. While these advancements are undoubtedly crucial, an even more foundational challenge lies in the data itself. The complexity inherent in DocRE makes the labeling process prone to errors, compounded by the extreme sparsity of positive relation samples, which is driven by both the limited availability of positive instances and the broad diversity of positive relation types. These factors can lead to biased optimization processes, further complicating the task of accurate relation extraction. Recognizing these challenges, we have developed a robust framework called \textit{\textbf{COMM}} to better solve DocRE. \textit{\textbf{COMM}} operates by initially employing an instance-aware reasoning method to dynamically capture pertinent information of entity pairs within the document and extract relational features. Following this, \textit{\textbf{COMM}} takes into account the distribution of relations and the difficulty of samples to dynamically adjust the margins between prediction logits and the decision threshold, a process we call Concentrated Margin Maximization. In this way, \textit{\textbf{COMM}} not only enhances the extraction of relevant relational features but also boosts DocRE performance by addressing the specific challenges posed by the data. Extensive experiments and analysis demonstrate the versatility and effectiveness of \textit{\textbf{COMM}}, especially its robustness when trained on low-quality data (achieves \textgreater 10\% performance gains).
XIFBench: Evaluating Large Language Models on Multilingual Instruction Following
Li, Zhenyu, Chen, Kehai, Long, Yunfei, Bai, Xuefeng, Zhang, Yaoyin, Wei, Xuchen, Li, Juntao, Zhang, Min
Large Language Models (LLMs) have demonstrated remarkable instruction-following capabilities across various applications. However, their performance in multilingual settings remains poorly understood, as existing evaluations lack fine-grained constraint analysis. We introduce XIFBench, a comprehensive constraint-based benchmark for assessing multilingual instruction-following abilities of LLMs, featuring a novel taxonomy of five constraint categories and 465 parallel instructions across six languages spanning different resource levels. To ensure consistent cross-lingual evaluation, we develop a requirement-based protocol that leverages English requirements as semantic anchors. These requirements are then used to validate the translations across languages. Extensive experiments with various LLMs reveal notable variations in instruction-following performance across resource levels, identifying key influencing factors such as constraint categories, instruction complexity, and cultural specificity.
Bridging Text and Vision: A Multi-View Text-Vision Registration Approach for Cross-Modal Place Recognition
Shang, Tianyi, Li, Zhenyu, Xu, Pengjie, Qiao, Jinwei, Chen, Gang, Ruan, Zihan, Hu, Weijun
Mobile robots necessitate advanced natural language understanding capabilities to accurately identify locations and perform tasks such as package delivery. However, traditional visual place recognition (VPR) methods rely solely on single-view visual information and cannot interpret human language descriptions. To overcome this challenge, we bridge text and vision by proposing a multiview (360{\deg} views of the surroundings) text-vision registration approach called Text4VPR for place recognition task, which is the first method that exclusively utilizes textual descriptions to match a database of images. Text4VPR employs the frozen T5 language model to extract global textual embeddings. Additionally, it utilizes the Sinkhorn algorithm with temperature coefficient to assign local tokens to their respective clusters, thereby aggregating visual descriptors from images. During the training stage, Text4VPR emphasizes the alignment between individual text-image pairs for precise textual description. In the inference stage, Text4VPR uses the Cascaded Cross-Attention Cosine Alignment (CCCA) to address the internal mismatch between text and image groups. Subsequently, Text4VPR performs precisely place match based on the descriptions of text-image groups. On Street360Loc, the first text to image VPR dataset we created, Text4VPR builds a robust baseline, achieving a leading top-1 accuracy of 57% and a leading top-10 accuracy of 92% within a 5-meter radius on the test set, which indicates that localization from textual descriptions to images is not only feasible but also holds significant potential for further advancement, as shown in Figure 1.
MambaPlace:Text-to-Point-Cloud Cross-Modal Place Recognition with Attention Mamba Mechanisms
Shang, Tianyi, Li, Zhenyu, Xu, Pengjie, Qiao, Jinwei
Vision Language Place Recognition (VLVPR) enhances robot localization performance by incorporating natural language descriptions from images. By utilizing language information, VLVPR directs robot place matching, overcoming the constraint of solely depending on vision. The essence of multimodal fusion lies in mining the complementary information between different modalities. However, general fusion methods rely on traditional neural architectures and are not well equipped to capture the dynamics of cross modal interactions, especially in the presence of complex intra modal and inter modal correlations. To this end, this paper proposes a novel coarse to fine and end to end connected cross modal place recognition framework, called MambaPlace. In the coarse localization stage, the text description and 3D point cloud are encoded by the pretrained T5 and instance encoder, respectively. They are then processed using Text Attention Mamba (TAM) and Point Clouds Mamba (PCM) for data enhancement and alignment. In the subsequent fine localization stage, the features of the text description and 3D point cloud are cross modally fused and further enhanced through cascaded Cross Attention Mamba (CCAM). Finally, we predict the positional offset from the fused text point cloud features, achieving the most accurate localization. Extensive experiments show that MambaPlace achieves improved localization accuracy on the KITTI360Pose dataset compared to the state of the art methods.
CoPRA: Bridging Cross-domain Pretrained Sequence Models with Complex Structures for Protein-RNA Binding Affinity Prediction
Han, Rong, Liu, Xiaohong, Pan, Tong, Xu, Jing, Wang, Xiaoyu, Lan, Wuyang, Li, Zhenyu, Wang, Zixuan, Song, Jiangning, Wang, Guangyu, Chen, Ting
Accurately measuring protein-RNA binding affinity is crucial in many biological processes and drug design. Previous computational methods for protein-RNA binding affinity prediction rely on either sequence or structure features, unable to capture the binding mechanisms comprehensively. The recent emerging pre-trained language models trained on massive unsupervised sequences of protein and RNA have shown strong representation ability for various in-domain downstream tasks, including binding site prediction. However, applying different-domain language models collaboratively for complex-level tasks remains unexplored. In this paper, we propose CoPRA to bridge pre-trained language models from different biological domains via Complex structure for Protein-RNA binding Affinity prediction. We demonstrate for the first time that cross-biological modal language models can collaborate to improve binding affinity prediction. We propose a Co-Former to combine the cross-modal sequence and structure information and a bi-scope pre-training strategy for improving Co-Former's interaction understanding. Meanwhile, we build the largest protein-RNA binding affinity dataset PRA310 for performance evaluation. We also test our model on a public dataset for mutation effect prediction. CoPRA reaches state-of-the-art performance on all the datasets. We provide extensive analyses and verify that CoPRA can (1) accurately predict the protein-RNA binding affinity; (2) understand the binding affinity change caused by mutations; and (3) benefit from scaling data and model size.
AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework
Li, Xiang, Li, Zhenyu, Shi, Chen, Xu, Yong, Du, Qing, Tan, Mingkui, Huang, Jun, Lin, Wei
The task of financial analysis primarily encompasses two key areas: stock trend prediction and the corresponding financial question answering. Currently, machine learning and deep learning algorithms (ML&DL) have been widely applied for stock trend predictions, leading to significant progress. However, these methods fail to provide reasons for predictions, lacking interpretability and reasoning processes. Also, they can not integrate textual information such as financial news or reports. Meanwhile, large language models (LLMs) have remarkable textual understanding and generation ability. But due to the scarcity of financial training datasets and limited integration with real-time knowledge, LLMs still suffer from hallucinations and are unable to keep up with the latest information. To tackle these challenges, we first release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data. It has a positive impact on training LLMs for completing financial analysis. We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task, which integrates retrieval-augmented generation (RAG) techniques. Extensive experiments are conducted to demonstrate the effectiveness of our framework on financial analysis.
UniMem: Towards a Unified View of Long-Context Large Language Models
Fang, Junjie, Tang, Likai, Bi, Hongzhe, Qin, Yujia, Sun, Si, Li, Zhenyu, Li, Haolun, Li, Yongjian, Cong, Xin, Yan, Yukun, Shi, Xiaodong, Song, Sen, Lin, Yankai, Liu, Zhiyuan, Sun, Maosong
Long-context processing is a critical ability that constrains the applicability of large language models. Although there exist various methods devoted to enhancing the long-context processing ability of large language models (LLMs), they are developed in an isolated manner and lack systematic analysis and integration of their strengths, hindering further developments. In this paper, we introduce UniMem, a unified framework that reformulates existing long-context methods from the view of memory augmentation of LLMs. UniMem is characterized by four key dimensions: Memory Management, Memory Writing, Memory Reading, and Memory Injection, providing a systematic theory for understanding various long-context methods. We reformulate 16 existing methods based on UniMem and analyze four representative methods: Transformer-XL, Memorizing Transformer, RMT, and Longformer into equivalent UniMem forms to reveal their design principles and strengths. Based on these analyses, we propose UniMix, an innovative approach that integrates the strengths of these algorithms. Experimental results show that UniMix achieves superior performance in handling long contexts with significantly lower perplexity than baselines.
FlexKBQA: A Flexible LLM-Powered Framework for Few-Shot Knowledge Base Question Answering
Li, Zhenyu, Fan, Sunqi, Gu, Yu, Li, Xiuxing, Duan, Zhichao, Dong, Bowen, Liu, Ning, Wang, Jianyong
Knowledge base question answering (KBQA) is a critical yet challenging task due to the vast number of entities within knowledge bases and the diversity of natural language questions posed by users. Unfortunately, the performance of most KBQA models tends to decline significantly in real-world scenarios where high-quality annotated data is insufficient. To mitigate the burden associated with manual annotation, we introduce FlexKBQA by utilizing Large Language Models (LLMs) as program translators for addressing the challenges inherent in the few-shot KBQA task. Specifically, FlexKBQA leverages automated algorithms to sample diverse programs, such as SPARQL queries, from the knowledge base, which are subsequently converted into natural language questions via LLMs. This synthetic dataset facilitates training a specialized lightweight model for the KB. Additionally, to reduce the barriers of distribution shift between synthetic data and real user questions, FlexKBQA introduces an executionguided self-training method to iterative leverage unlabeled user questions. Furthermore, we explore harnessing the inherent reasoning capability of LLMs to enhance the entire framework. Consequently, FlexKBQA delivers substantial flexibility, encompassing data annotation, deployment, and being domain agnostic. Through extensive experiments on GrailQA, WebQSP, and KQA Pro, we observe that under the few-shot even the more challenging zero-shot scenarios, FlexKBQA achieves impressive results with a few annotations, surpassing all previous baselines and even approaching the performance of supervised models, achieving a remarkable 93% performance relative to the fully-supervised models. We posit that FlexKBQA represents a significant advancement towards exploring better integration of large and lightweight models. The code is open-sourced.
Enhancing the Spatial Awareness Capability of Multi-Modal Large Language Model
Zhao, Yongqiang, Li, Zhenyu, Jin, Zhi, Zhang, Feng, Zhao, Haiyan, Dou, Chengfeng, Tao, Zhengwei, Xu, Xinhai, Liu, Donghong
The Multi-Modal Large Language Model (MLLM) refers to an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data. Spatial awareness stands as one of the crucial abilities of MLLM, encompassing diverse skills related to understanding spatial relationships among objects and between objects and the scene area. Industries such as autonomous driving, smart healthcare, robotics, virtual, and augmented reality heavily demand MLLM's spatial awareness capabilities. However, there exists a noticeable gap between the current spatial awareness capabilities of MLLM and the requirements set by human needs. To address this issue, this paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries. Specifically, for a particular multi-modal task, we utilize algorithms for acquiring geometric spatial information and scene graphs to obtain relevant geometric spatial information and scene details of objects involved in the query. Subsequently, based on this information, we direct MLLM to address spatial awareness-related queries posed by the user. Extensive experiments were conducted in benchmarks such as MME, MM-Vet, and other multi-modal large language models. The experimental results thoroughly confirm the efficacy of the proposed method in enhancing the spatial awareness tasks and associated tasks of MLLM.
Enhancing Subtask Performance of Multi-modal Large Language Model
Zhao, Yongqiang, Li, Zhenyu, Zhang, Feng, Xu, Xinhai, Liu, Donghong
Multi-modal Large Language Model (MLLM) refers to a model expanded from a Large Language Model (LLM) that possesses the capability to handle and infer multi-modal data. Current MLLMs typically begin by using LLMs to decompose tasks into multiple subtasks, then employing individual pre-trained models to complete specific subtasks, and ultimately utilizing LLMs to integrate the results of each subtasks to obtain the results of the task. In real-world scenarios, when dealing with large projects, it is common practice to break down the project into smaller sub-projects, with different teams providing corresponding solutions or results. The project owner then decides which solution or result to use, ensuring the best possible outcome for each subtask and, consequently, for the entire project. Inspired by this, this study considers selecting multiple pre-trained models to complete the same subtask. By combining the results from multiple pre-trained models, the optimal subtask result is obtained, enhancing the performance of the MLLM. Specifically, this study first selects multiple pre-trained models focused on the same subtask based on distinct evaluation approaches, and then invokes these models in parallel to process input data and generate corresponding subtask results. Finally, the results from multiple pre-trained models for the same subtask are compared using the LLM, and the best result is chosen as the outcome for that subtask. Extensive experiments are conducted in this study using GPT-4 annotated datasets and human-annotated datasets. The results of various evaluation metrics adequately demonstrate the effectiveness of the proposed approach in this paper.