Goto

Collaborating Authors

 Li, Zhaowei


Vote-Tree-Planner: Optimizing Execution Order in LLM-based Task Planning Pipeline via Voting

arXiv.org Artificial Intelligence

Integrating large language models (LLMs) into closed-loop robotic task planning has become increasingly popular within embodied artificial intelligence. Previous efforts mainly focused on leveraging the strong reasoning abilities of LLMs to enhance task planning performance while often overlooking task planning efficiency and executability due to repetitive queries to LLMs. This paper addresses the synergy between LLMs and task planning systems, aiming to minimize redundancy while enhancing planning effectiveness. Specifically, building upon Prog-Prompt and the high-level concept of Tree-Planner, we propose Vote-Tree-Planner. This sampling strategy utilizes votes to guide plan traversal during the decision-making process. Our approach is motivated by a straightforward observation: assigning weights to agents during decision-making enables the evaluation of critical paths before execution. With this simple vote-tree construction, our method further improves the success rate and reduces the number of queries to LLMs. The experimental results highlight that our Vote-Tree-Planner demonstrates greater stability and shows a higher average success rate and goal condition recall on the unseen dataset compared with previous baseline methods. These findings underscore the potential of the Vote-Tree-Planner to enhance planning accuracy, reliability, and efficiency in LLM-based planning systems.


Kimi k1.5: Scaling Reinforcement Learning with LLMs

arXiv.org Artificial Intelligence

Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).


Analyzing Nobel Prize Literature with Large Language Models

arXiv.org Artificial Intelligence

This study examines the capabilities of advanced Large Language Models (LLMs), particularly the o1 model, in the context of literary analysis. The outputs of these models are compared directly to those produced by graduate-level human participants. By focusing on two Nobel Prize-winning short stories, 'Nine Chapters' by Han Kang, the 2024 laureate, and 'Friendship' by Jon Fosse, the 2023 laureate, the research explores the extent to which AI can engage with complex literary elements such as thematic analysis, intertextuality, cultural and historical contexts, linguistic and structural innovations, and character development. Given the Nobel Prize's prestige and its emphasis on cultural, historical, and linguistic richness, applying LLMs to these works provides a deeper understanding of both human and AI approaches to interpretation. The study uses qualitative and quantitative evaluations of coherence, creativity, and fidelity to the text, revealing the strengths and limitations of AI in tasks typically reserved for human expertise. While LLMs demonstrate strong analytical capabilities, particularly in structured tasks, they often fall short in emotional nuance and coherence, areas where human interpretation excels. This research underscores the potential for human-AI collaboration in the humanities, opening new opportunities in literary studies and beyond.


Understanding the Role of LLMs in Multimodal Evaluation Benchmarks

arXiv.org Artificial Intelligence

The rapid advancement of Multimodal Large Language Models (MLLMs) has been accompanied by the development of various benchmarks to evaluate their capabilities. However, the true nature of these evaluations and the extent to which they assess multimodal reasoning versus merely leveraging the underlying Large Language Model (LLM) backbone remain unclear. This paper presents a comprehensive investigation into the role of LLM backbones in MLLM evaluation, focusing on two critical aspects: the degree to which current benchmarks truly assess multimodal reasoning and the influence of LLM prior knowledge on performance. Specifically, we introduce a modified evaluation protocol to disentangle the contributions of the LLM backbone from multimodal integration, and an automatic knowledge identification technique for diagnosing whether LLMs equip the necessary knowledge for corresponding multimodal questions. Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs. Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone, indicating a heavy reliance on language capabilities. To address knowledge deficiencies, we propose a knowledge augmentation pipeline that achieves significant performance gains, with improvements of up to 60% on certain datasets, resulting in a approximately 4x increase in performance. Our work provides crucial insights into the role of the LLM backbone in MLLMs, and highlights the need for more nuanced benchmarking approaches. The rapid development of Large Language Models (LLMs) (Touvron et al., 2023; Bai et al., 2023a), combined with advancements in visual encoders (Radford et al., 2021; Zhai et al., 2023) and modality bridge techniques (Liu et al., 2023a; Dai et al., 2023), has catalyzed the evolution of Multimodal Large Language Models (MLLMs) capable of comprehending diverse multi-modal inputs.


QCRD: Quality-guided Contrastive Rationale Distillation for Large Language Models

arXiv.org Artificial Intelligence

Deploying large language models (LLMs) poses challenges in terms of resource limitations and inference efficiency. To address these challenges, recent research has focused on using smaller task-specific language models, which are enhanced by distilling the knowledge rationales generated by LLMs. However, previous works mostly emphasize the effectiveness of positive knowledge, while overlooking the knowledge noise and the exploration of negative knowledge. In this paper, we first propose a general approach called quality-guided contrastive rationale distillation for reasoning capacity learning, considering contrastive learning perspectives. For the learning of positive knowledge, we collect positive rationales through self-consistency to denoise the LLM rationales generated by temperature sampling. For the negative knowledge distillation, we generate negative rationales using temperature sampling for the iteration-before smaller language models themselves. Finally, a contrastive loss is designed to better distill the positive and negative rationales into the smaller language model, where an online-update discriminator is used to judge the qualities of rationales and assign weights for better optimizing the training process. Through extensive experiments on multiple reasoning tasks, we demonstrate that our method consistently outperforms the previous distillation methods and produces higher-quality rationales.


SpeechAlign: Aligning Speech Generation to Human Preferences

arXiv.org Artificial Intelligence

Speech language models have significantly advanced in generating realistic speech, with neural codec language models standing out. However, the integration of human feedback to align speech outputs to human preferences is often neglected. This paper addresses this gap by first analyzing the distribution gap in codec language models, highlighting how it leads to discrepancies between the training and inference phases, which negatively affects performance. Then we explore leveraging learning from human feedback to bridge the distribution gap. We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences. SpeechAlign involves constructing a preference codec dataset contrasting golden codec tokens against synthetic tokens, followed by preference optimization to improve the codec language model. This cycle of improvement is carried out iteratively to steadily convert weak models to strong ones. Through both subjective and objective evaluations, we show that SpeechAlign can bridge the distribution gap and facilitating continuous self-improvement of the speech language model. Moreover, SpeechAlign exhibits robust generalization capabilities and works for smaller models. Code and models will be available at https://github.com/0nutation/SpeechGPT.


CMP: Cooperative Motion Prediction with Multi-Agent Communication

arXiv.org Artificial Intelligence

The confluence of the advancement of Autonomous Vehicles (AVs) and the maturity of Vehicle-to-Everything (V2X) communication has enabled the capability of cooperative connected and automated vehicles (CAVs). Building on top of cooperative perception, this paper explores the feasibility and effectiveness of cooperative motion prediction. Our method, CMP, takes LiDAR signals as input to enhance tracking and prediction capabilities. Unlike previous work that focuses separately on either cooperative perception or motion prediction, our framework, to the best of our knowledge, is the first to address the unified problem where CAVs share information in both perception and prediction modules. Incorporated into our design is the unique capability to tolerate realistic V2X bandwidth limitations and transmission delays, while dealing with bulky perception representations. We also propose a prediction aggregation module, which unifies the predictions obtained by different CAVs and generates the final prediction. Through extensive experiments and ablation studies, we demonstrate the effectiveness of our method in cooperative perception, tracking, and motion prediction tasks. In particular, CMP reduces the average prediction error by 17.2\% with fewer missing detections compared with the no cooperation setting. Our work marks a significant step forward in the cooperative capabilities of CAVs, showcasing enhanced performance in complex scenarios.


GroundingGPT:Language Enhanced Multi-modal Grounding Model

arXiv.org Artificial Intelligence

Multi-modal large language models have demonstrated impressive performance across various tasks in different modalities. However, existing multi-modal models primarily emphasize capturing global information within each modality while neglecting the importance of perceiving local information across modalities. Consequently, these models lack the ability to effectively understand the fine-grained details of input data, limiting their performance in tasks that require a more nuanced understanding. To address this limitation, there is a compelling need to develop models that enable fine-grained understanding across multiple modalities, thereby enhancing their applicability to a wide range of tasks. In this paper, we propose GroundingGPT, a language enhanced multi-modal grounding model. Beyond capturing global information like other multi-modal models, our proposed model excels at tasks demanding a detailed understanding of local information within the input. It demonstrates precise identification and localization of specific regions in images or moments in videos. To achieve this objective, we design a diversified dataset construction pipeline, resulting in a multi-modal, multi-granularity dataset for model training. The code, dataset, and demo of our model can be found at https: //github.com/lzw-lzw/GroundingGPT.


SpeechAgents: Human-Communication Simulation with Multi-Modal Multi-Agent Systems

arXiv.org Artificial Intelligence

Human communication is a complex and diverse process that not only involves multiple factors such as language, commonsense, and cultural backgrounds but also requires the participation of multimodal information, such as speech. Large Language Model (LLM)-based multi-agent systems have demonstrated promising performance in simulating human society. Can we leverage LLM-based multi-agent systems to simulate human communication? However, current LLM-based multi-agent systems mainly rely on text as the primary medium. In this paper, we propose SpeechAgents, a multi-modal LLM based multi-agent system designed for simulating human communication. SpeechAgents utilizes multi-modal LLM as the control center for individual agent and employes multi-modal signals as the medium for exchanged messages among agents. Additionally, we propose Multi-Agent Tuning to enhance the multi-agent capabilities of LLM without compromising general abilities. To strengthen and evaluate the effectiveness of human communication simulation, we build the Human-Communication Simulation Benchmark. Experimental results demonstrate that SpeechAgents can simulate human communication dialogues with consistent content, authentic rhythm, and rich emotions and demonstrate excellent scalability even with up to 25 agents, which can apply to tasks such as drama creation and audio novels generation. Code and models will be open-sourced at https://github. com/0nutation/SpeechAgents