Li, Yuzhi
Shot Sequence Ordering for Video Editing: Benchmarks, Metrics, and Cinematology-Inspired Computing Methods
Li, Yuzhi, Xu, Haojun, Tian, Feng
With the rising popularity of short video platforms, the demand for video production has increased substantially. However, high-quality video creation continues to rely heavily on professional editing skills and a nuanced understanding of visual language. To address this challenge, the Shot Sequence Ordering (SSO) task in AI-assisted video editing has emerged as a pivotal approach for enhancing video storytelling and the overall viewing experience. Nevertheless, the progress in this field has been impeded by a lack of publicly available benchmark datasets. In response, this paper introduces two novel benchmark datasets, AVE-Order and ActivityNet-Order. Additionally, we employ the Kendall Tau distance as an evaluation metric for the SSO task and propose the Kendall Tau Distance-Cross Entropy Loss. We further introduce the concept of Cinematology Embedding, which incorporates movie metadata and shot labels as prior knowledge into the SSO model, and constructs the AVE-Meta dataset to validate the method's effectiveness. Experimental results indicate that the proposed loss function and method substantially enhance SSO task accuracy. All datasets are publicly accessible at https://github.com/litchiar/ShotSeqBench.
Mitigating Hallucinations on Object Attributes using Multiview Images and Negative Instructions
Tan, Zhijie, Li, Yuzhi, Meng, Shengwei, Yuan, Xiang, Li, Weiping, Mo, Tong, Wang, Bingce, Chu, Xu
Current popular Large Vision-Language Models (LVLMs) are suffering from Hallucinations on Object Attributes (HoOA), leading to incorrect determination of fine-grained attributes in the input images. Leveraging significant advancements in 3D generation from a single image, this paper proposes a novel method to mitigate HoOA in LVLMs. This method utilizes multiview images sampled from generated 3D representations as visual prompts for LVLMs, thereby providing more visual information from other viewpoints. Furthermore, we observe the input order of multiple multiview images significantly affects the performance of LVLMs. Consequently, we have devised Multiview Image Augmented VLM (MIAVLM), incorporating a Multiview Attributes Perceiver (MAP) submodule capable of simultaneously eliminating the influence of input image order and aligning visual information from multiview images with Large Language Models (LLMs). Besides, we designed and employed negative instructions to mitigate LVLMs' bias towards ``Yes" responses. Comprehensive experiments demonstrate the effectiveness of our method.