Goto

Collaborating Authors

 Li, Yuxuan


EgoToM: Benchmarking Theory of Mind Reasoning from Egocentric Videos

arXiv.org Artificial Intelligence

We introduce EgoToM, a new video question-answering benchmark that extends Theory-of-Mind (ToM) evaluation to egocentric domains. Using a causal ToM model, we generate multi-choice video QA instances for the Ego4D dataset to benchmark the ability to predict a camera wearer's goals, beliefs, and next actions. We study the performance of both humans and state of the art multimodal large language models (MLLMs) on these three interconnected inference problems. Our evaluation shows that MLLMs achieve close to human-level accuracy on inferring goals from egocentric videos. However, MLLMs (including the largest ones we tested with over 100B parameters) fall short of human performance when inferring the camera wearers' in-the-moment belief states and future actions that are most consistent with the unseen video future. We believe that our results will shape the future design of an important class of egocentric digital assistants which are equipped with a reasonable model of the user's internal mental states.


FR-Spec: Accelerating Large-Vocabulary Language Models via Frequency-Ranked Speculative Sampling

arXiv.org Artificial Intelligence

Speculative sampling has emerged as an important technique for accelerating the auto-regressive generation process of large language models (LLMs) by utilizing a draft-then-verify mechanism to produce multiple tokens per forward pass. While state-of-the-art speculative sampling methods use only a single layer and a language modeling (LM) head as the draft model to achieve impressive layer compression, their efficiency gains are substantially reduced for large-vocabulary LLMs, such as Llama-3-8B with a vocabulary of 128k tokens. To address this, we present FR-Spec, a frequency-ranked speculative sampling framework that optimizes draft candidate selection through vocabulary space compression. By constraining the draft search to a frequency-prioritized token subset, our method reduces LM Head computation overhead by 75% while ensuring the equivalence of the final output distribution. Experiments across multiple datasets demonstrate an average of 1.12$\times$ speedup over the state-of-the-art speculative sampling method EAGLE-2. Code available at https://github.com/thunlp/FR-Spec.


Spontaneous Giving and Calculated Greed in Language Models

arXiv.org Artificial Intelligence

Large language models demonstrate advanced problem-solving capabilities by incorporating reasoning techniques such as chain of thought and reflection. However, how these reasoning capabilities extend to social intelligence remains unclear. In this study, we investigate this question using economic games that model social dilemmas, where social intelligence plays a crucial role. First, we examine the effects of chain-of-thought and reflection techniques in a public goods game. We then extend our analysis to six economic games on cooperation and punishment, comparing off-the-shelf non-reasoning and reasoning models. We find that reasoning models significantly reduce cooperation and norm enforcement, prioritizing individual rationality. Consequently, groups with more reasoning models exhibit less cooperation and lower gains through repeated interactions. These behaviors parallel human tendencies of "spontaneous giving and calculated greed." Our results suggest the need for AI architectures that incorporate social intelligence alongside reasoning capabilities to ensure that AI supports, rather than disrupts, human cooperative intuition. Recent innovations in reasoning techniques, such as chain of thought [1] and reflection [2], are advancing the intellectual capabilities of large language models (LLMs) to the next level. Models such as OpenAI o1 leverage these techniques to solve complex problems, generate coherent arguments, and improve decision-making in multi-step reasoning scenarios [3-5]. Indeed, these reasoning models have demonstrated excellence in mathematical proofs, logical deduction, and strategic planning [6, 7]. The necessity of social intelligence is highlighted in social dilemmas, where individual rationality leads to collective irrationality [12].


TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators

arXiv.org Artificial Intelligence

Triton, a high-level Python-like language designed for building efficient GPU kernels, is widely adopted in deep learning frameworks due to its portability, flexibility, and accessibility. However, programming and parallel optimization still require considerable trial and error from Triton developers. Despite advances in large language models (LLMs) for conventional code generation, these models struggle to generate accurate, performance-optimized Triton code, as they lack awareness of its specifications and the complexities of GPU programming. More critically, there is an urgent need for systematic evaluations tailored to Triton. In this work, we introduce TritonBench, the first comprehensive benchmark for Triton operator generation. TritonBench features two evaluation channels: a curated set of 184 real-world operators from GitHub and a collection of operators aligned with PyTorch interfaces. Unlike conventional code benchmarks prioritizing functional correctness, TritonBench also profiles efficiency performance on widely deployed GPUs aligned with industry applications. Our study reveals that current state-of-the-art code LLMs struggle to generate efficient Triton operators, highlighting a significant gap in high-performance code generation. TritonBench will be available at https://github.com/thunlp/TritonBench.


Actions Speak Louder than Words: Agent Decisions Reveal Implicit Biases in Language Models

arXiv.org Artificial Intelligence

While advances in fairness and alignment have helped mitigate overt biases exhibited by large language models (LLMs) when explicitly prompted, we hypothesize that these models may still exhibit implicit biases when simulating human behavior. To test this hypothesis, we propose a technique to systematically uncover such biases across a broad range of sociodemographic categories by assessing decision-making disparities among agents with LLM-generated, sociodemographically-informed personas. Using our technique, we tested six LLMs across three sociodemographic groups and four decision-making scenarios. Our results show that state-of-the-art LLMs exhibit significant sociodemographic disparities in nearly all simulations, with more advanced models exhibiting greater implicit biases despite reducing explicit biases. Furthermore, when comparing our findings to real-world disparities reported in empirical studies, we find that the biases we uncovered are directionally aligned but markedly amplified. This directional alignment highlights the utility of our technique in uncovering systematic biases in LLMs rather than random variations; moreover, the presence and amplification of implicit biases emphasizes the need for novel strategies to address these biases.


The Internet of Large Language Models: An Orchestration Framework for LLM Training and Knowledge Exchange Toward Artificial General Intelligence

arXiv.org Artificial Intelligence

This paper explores the multi-dimensional challenges faced during the development of Large Language Models (LLMs), including the massive scale of model parameters and file sizes, the complexity of development environment configuration, the singularity of model functionality, and the high costs of computational resources. To address these challenges, this paper proposes three core technical solutions: LLM sharing protocol, LLM universal environment framework, and Agent optimal path module. To solve the computational resource constraints in the early stages of research, we further innovatively propose a joint mining mechanism, achieving bilateral value sharing between computing power providers and model designers, including breakthrough rewards for optimal model paths and long-term profit distribution, thereby providing researchers with cost-optimized computational resource support and promoting the continuous development of LLM research and applications.


RMTransformer: Accurate Radio Map Construction and Coverage Prediction

arXiv.org Artificial Intelligence

Radio map, or pathloss map prediction, is a crucial method for wireless network modeling and management. By leveraging deep learning to construct pathloss patterns from geographical maps, an accurate digital replica of the transmission environment could be established with less computational overhead and lower prediction error compared to traditional model-driven techniques. While existing state-of-the-art (SOTA) methods predominantly rely on convolutional architectures, this paper introduces a hybrid transformer-convolution model, termed RMTransformer, to enhance the accuracy of radio map prediction. The proposed model features a multi-scale transformer-based encoder for efficient feature extraction and a convolution-based decoder for precise pixel-level image reconstruction. Simulation results demonstrate that the proposed scheme significantly improves prediction accuracy, and over a 30% reduction in root mean square error (RMSE) is achieved compared to typical SOTA approaches.


Arti-PG: A Toolbox for Procedurally Synthesizing Large-Scale and Diverse Articulated Objects with Rich Annotations

arXiv.org Artificial Intelligence

The acquisition of substantial volumes of 3D articulated object data is expensive and time-consuming, and consequently the scarcity of 3D articulated object data becomes an obstacle for deep learning methods to achieve remarkable performance in various articulated object understanding tasks. Meanwhile, pairing these object data with detailed annotations to enable training for various tasks is also difficult and labor-intensive to achieve. In order to expeditiously gather a significant number of 3D articulated objects with comprehensive and detailed annotations for training, we propose Articulated Object Procedural Generation toolbox, a.k.a. Arti-PG toolbox. Arti-PG toolbox consists of i) descriptions of articulated objects by means of a generalized structure program along with their analytic correspondence to the objects' point cloud, ii) procedural rules about manipulations on the structure program to synthesize large-scale and diverse new articulated objects, and iii) mathematical descriptions of knowledge (e.g. affordance, semantics, etc.) to provide annotations to the synthesized object. Arti-PG has two appealing properties for providing training data for articulated object understanding tasks: i) objects are created with unlimited variations in shape through program-oriented structure manipulation, ii) Arti-PG is widely applicable to diverse tasks by easily providing comprehensive and detailed annotations. Arti-PG now supports the procedural generation of 26 categories of articulate objects and provides annotations across a wide range of both vision and manipulation tasks, and we provide exhaustive experiments which fully demonstrate its advantages. We will make Arti-PG toolbox publicly available for the community to use.


GradAlign for Training-free Model Performance Inference

arXiv.org Artificial Intelligence

Architecture plays an important role in deciding the performance of deep neural networks. However, the search for the optimal architecture is often hindered by the vast search space, making it a time-intensive process. Recently, a novel approach known as training-free neural architecture search (NAS) has emerged, aiming to discover the ideal architecture without necessitating extensive training. Training-free NAS leverages various indicators for architecture selection, including metrics such as the count of linear regions, the density of per-sample losses, and the stability of the finite-width Neural Tangent Kernel (NTK) matrix. Despite the competitive empirical performance of current training-free NAS techniques, they suffer from certain limitations, including inconsistent performance and a lack of deep understanding. In this paper, we introduce GradAlign, a simple yet effective method designed for inferring model performance without the need for training. At its core, GradAlign quantifies the extent of conflicts within per-sample gradients during initialization, as substantial conflicts hinder model convergence and ultimately result in worse performance. We evaluate GradAlign against established training-free NAS methods using standard NAS benchmarks, showing a better overall performance. Moreover, we show that the widely adopted metric of linear region count may not suffice as a dependable criterion for selecting network architectures during at initialization.


ConceptFactory: Facilitate 3D Object Knowledge Annotation with Object Conceptualization

arXiv.org Artificial Intelligence

We present ConceptFactory, a novel scope to facilitate more efficient annotation of 3D object knowledge by recognizing 3D objects through generalized concepts (i.e. object conceptualization), aiming at promoting machine intelligence to learn comprehensive object knowledge from both vision and robotics aspects. This idea originates from the findings in human cognition research that the perceptual recognition of objects can be explained as a process of arranging generalized geometric components (e.g. cuboids and cylinders). ConceptFactory consists of two critical parts: i) ConceptFactory Suite, a unified toolbox that adopts Standard Concept Template Library (STL-C) to drive a web-based platform for object conceptualization, and ii) ConceptFactory Asset, a large collection of conceptualized objects acquired using ConceptFactory suite. Our approach enables researchers to effortlessly acquire or customize extensive varieties of object knowledge to comprehensively study different object understanding tasks. We validate our idea on a wide range of benchmark tasks from both vision and robotics aspects with state-of-the-art algorithms, demonstrating the high quality and versatility of annotations provided by our approach. Our website is available at https://apeirony.github.io/ConceptFactory.