Goto

Collaborating Authors

 Li, Yuqian


Game-Theoretic Question Selection for Tests

Journal of Artificial Intelligence Research

Conventionally, the questions on a test are assumed to be kept secret from test takers until the test. However, for tests that are taken on a large scale, particularly asynchronously, this is very hard to achieve. For example, TOEFL iBT and driver's license test questions are easily found online. This also appears likely to become an issue for Massive Open Online Courses (MOOCs, as offered for example by Coursera, Udacity, and edX). Specifically, the test result may not reflect the true ability of a test taker if questions are leaked beforehand. In this paper, we take the loss of confidentiality as a fact. Even so, not all hope is lost as the test taker can memorize only a limited set of questions' answers, and the tester can randomize which questions to let appear on the test. We model this as a Stackelberg game, where the tester commits to a mixed strategy and the follower responds. Informally, the goal of the tester is to best reveal the true ability of a test taker, while the test taker tries to maximize the test result (pass probability or score). We provide an exponential-size linear program formulation that computes the optimal test strategy, prove several NP-hardness results on computing optimal test strategies in general, and give efficient algorithms for special cases (scored tests and single-question tests). Experiments are also provided for those proposed algorithms to show their scalability and the increase of the tester's utility relative to that of the uniform-at-random strategy. The increase is quite significant when questions have some correlation---for example, when a test taker who can solve a harder question can always solve easier questions.


Rules for Choosing Societal Tradeoffs

AAAI Conferences

We study the societal tradeoffs problem, where a set of voters each submit their ideal tradeoff value between each pair of activities (e.g., "using a gallon of gasoline is as bad as creating 2 bags of landfill trash"), and these are then aggregated into the societal tradeoff vector using a rule. We introduce the family of distance-based rules and show that these can be justified as maximum likelihood estimators of the truth. Within this family, we single out the logarithmic distance-based rule as especially appealing based on a social-choice-theoretic axiomatization. We give an efficient algorithm for executing this rule as well as an approximate hill climbing algorithm, and evaluate these experimentally.


Cooperative Game Solution Concepts that Maximize Stability under Noise

AAAI Conferences

In cooperative game theory, it is typically assumed that the value of each coalition is known. We depart from this, assuming that v(S) is only a noisy estimate of the true value V (S), which is not yet known. In this context, we investigate which solution concepts maximize the probability of ex-post stability (after the true values are revealed). We show how various conditions on the noise characterize the least core and the nucleolus as optimal. Modifying some aspects of these conditions to (arguably) make them more realistic, we obtain characterizations of new solution concepts as being optimal, including the partial nucleolus, the multiplicative least core, and the multiplicative nucleolus.