Li, Yuan-Fang
SQLong: Enhanced NL2SQL for Longer Contexts with LLMs
Nguyen, Dai Quoc, Hoang, Cong Duy Vu, Vu, Duy, Tangari, Gioacchino, Vu, Thanh Tien, Dharmasiri, Don, Li, Yuan-Fang, Duong, Long
Open-weight large language models (LLMs) have significantly advanced performance in the Natural Language to SQL (NL2SQL) task. However, their effectiveness diminishes when dealing with large database schemas, as the context length increases. To address this limitation, we present SQLong, a novel and efficient data augmentation framework designed to enhance LLM performance in long-context scenarios for the NL2SQL task. SQLong generates augmented datasets by extending existing database schemas with additional synthetic CREATE TABLE commands and corresponding data rows, sampled from diverse schemas in the training data. This approach effectively simulates long-context scenarios during finetuning and evaluation. Through experiments on the Spider and BIRD datasets, we demonstrate that LLMs finetuned with SQLong-augmented data significantly outperform those trained on standard datasets. These imply SQLong's practical implementation and its impact on improving NL2SQL capabilities in real-world settings with complex database schemas.
A Unified Hyperparameter Optimization Pipeline for Transformer-Based Time Series Forecasting Models
Xu, Jingjing, Wu, Caesar, Li, Yuan-Fang, Danoy, Grรฉgoire, Bouvry, Pascal
Transformer-based models for time series forecasting (TSF) have attracted significant attention in recent years due to their effectiveness and versatility. However, these models often require extensive hyperparameter optimization (HPO) to achieve the best possible performance, and a unified pipeline for HPO in transformer-based TSF remains lacking. In this paper, we present one such pipeline and conduct extensive experiments on several state-of-the-art (SOTA) transformer-based TSF models. These experiments are conducted on standard benchmark datasets to evaluate and compare the performance of different models, generating practical insights and examples. Our pipeline is generalizable beyond transformer-based architectures and can be applied to other SOTA models, such as Mamba and TimeMixer, as demonstrated in our experiments. The goal of this work is to provide valuable guidance to both industry practitioners and academic researchers in efficiently identifying optimal hyperparameters suited to their specific domain applications. The code and complete experimental results are available on GitHub.
An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models
Shiri, Fatemeh, Guo, Xiao-Yu, Far, Mona Golestan, Yu, Xin, Haffari, Gholamreza, Li, Yuan-Fang
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs' spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs' spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. % Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning. Spatial-MM benchmark is available at: https://github.com/FatemehShiri/Spatial-MM
Towards Effective Data-Free Knowledge Distillation via Diverse Diffusion Augmentation
Li, Muquan, Zhang, Dongyang, He, Tao, Xie, Xiurui, Li, Yuan-Fang, Qin, Ke
Data-free knowledge distillation (DFKD) has emerged as a pivotal technique in the domain of model compression, substantially reducing the dependency on the original training data. Nonetheless, conventional DFKD methods that employ synthesized training data are prone to the limitations of inadequate diversity and discrepancies in distribution between the synthesized and original datasets. To address these challenges, this paper introduces an innovative approach to DFKD through diverse diffusion augmentation (DDA). Specifically, we revise the paradigm of common data synthesis in DFKD to a composite process through leveraging diffusion models subsequent to data synthesis for self-supervised augmentation, which generates a spectrum of data samples with similar distributions while retaining controlled variations. Furthermore, to mitigate excessive deviation in the embedding space, we introduce an image filtering technique grounded in cosine similarity to maintain fidelity during the knowledge distillation process. Comprehensive experiments conducted on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets showcase the superior performance of our method across various teacher-student network configurations, outperforming the contemporary state-of-the-art DFKD methods. Code will be available at:https://github.com/SLGSP/DDA.
Mastering the Craft of Data Synthesis for CodeLLMs
Chen, Meng, Arthur, Philip, Feng, Qianyu, Hoang, Cong Duy Vu, Hong, Yu-Heng, Moghaddam, Mahdi Kazemi, Nezami, Omid, Nguyen, Thien, Tangari, Gioacchino, Vu, Duy, Vu, Thanh, Johnson, Mark, Kenthapadi, Krishnaram, Dharmasiri, Don, Duong, Long, Li, Yuan-Fang
Large language models (LLMs) have shown impressive performance in \emph{code} understanding and generation, making coding tasks a key focus for researchers due to their practical applications and value as a testbed for LLM evaluation. Data synthesis and filtering techniques have been widely adopted and shown to be highly effective in this context. In this paper, we present a focused survey and taxonomy of these techniques, emphasizing recent advancements. We highlight key challenges, explore future research directions, and offer practical guidance for new researchers entering the field.
Scalable Frame-based Construction of Sociocultural NormBases for Socially-Aware Dialogues
Qu, Shilin, Wang, Weiqing, Zhou, Xin, Zhan, Haolan, Li, Zhuang, Qu, Lizhen, Luo, Linhao, Li, Yuan-Fang, Haffari, Gholamreza
Sociocultural norms serve as guiding principles for personal conduct in social interactions, emphasizing respect, cooperation, and appropriate behavior, which is able to benefit tasks including conversational information retrieval, contextual information retrieval and retrieval-enhanced machine learning. We propose a scalable approach for constructing a Sociocultural Norm (SCN) Base using Large Language Models (LLMs) for socially aware dialogues. We construct a comprehensive and publicly accessible Chinese Sociocultural NormBase. Our approach utilizes socially aware dialogues, enriched with contextual frames, as the primary data source to constrain the generating process and reduce the hallucinations. This enables extracting of high-quality and nuanced natural-language norm statements, leveraging the pragmatic implications of utterances with respect to the situation. As real dialogue annotated with gold frames are not readily available, we propose using synthetic data. Our empirical results show: (i) the quality of the SCNs derived from synthetic data is comparable to that from real dialogues annotated with gold frames, and (ii) the quality of the SCNs extracted from real data, annotated with either silver (predicted) or gold frames, surpasses that without the frame annotations. We further show the effectiveness of the extracted SCNs in a RAG-based (Retrieval-Augmented Generation) model to reason about multiple downstream dialogue tasks.
Rewarding What Matters: Step-by-Step Reinforcement Learning for Task-Oriented Dialogue
Du, Huifang, Li, Shuqin, Wu, Minghao, Feng, Xuejing, Li, Yuan-Fang, Wang, Haofen
Reinforcement learning (RL) is a powerful approach to enhance task-oriented dialogue (TOD) systems. However, existing RL methods tend to mainly focus on generation tasks, such as dialogue policy learning (DPL) or response generation (RG), while neglecting dialogue state tracking (DST) for understanding. This narrow focus limits the systems to achieve globally optimal performance by overlooking the interdependence between understanding and generation. Additionally, RL methods face challenges with sparse and delayed rewards, which complicates training and optimization. To address these issues, we extend RL into both understanding and generation tasks by introducing step-by-step rewards throughout the token generation. The understanding reward increases as more slots are correctly filled in DST, while the generation reward grows with the accurate inclusion of user requests. Our approach provides a balanced optimization aligned with task completion. Experimental results demonstrate that our approach effectively enhances the performance of TOD systems and achieves new state-of-the-art results on three widely used datasets, including MultiWOZ2.0, MultiWOZ2.1, and In-Car. Our approach also shows superior few-shot ability in low-resource settings compared to current models.
Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs
Nguyen, Minh-Vuong, Luo, Linhao, Shiri, Fatemeh, Phung, Dinh, Li, Yuan-Fang, Vu, Thuy-Trang, Haffari, Gholamreza
Large language models (LLMs) demonstrate strong reasoning abilities when prompted to generate chain-of-thought (CoT) explanations alongside answers. However, previous research on evaluating LLMs has solely focused on answer accuracy, neglecting the correctness of the generated CoT. In this paper, we delve deeper into the CoT reasoning capabilities of LLMs in multi-hop question answering by utilizing knowledge graphs (KGs). We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs' knowledge of reasoning and the accuracy of the generated CoT. Through experiments conducted on 5 different families of LLMs across 2 multi-hop question-answering datasets, we find that LLMs possess sufficient knowledge to perform reasoning. However, there exists a significant disparity between answer accuracy and faithfulness of the CoT reasoning generated by LLMs, indicating that they often arrive at correct answers through incorrect reasoning.
PromptDSI: Prompt-based Rehearsal-free Instance-wise Incremental Learning for Document Retrieval
Huynh, Tuan-Luc, Vu, Thuy-Trang, Wang, Weiqing, Wei, Yinwei, Le, Trung, Gasevic, Dragan, Li, Yuan-Fang, Do, Thanh-Toan
Differentiable Search Index (DSI) utilizes Pre-trained Language Models (PLMs) for efficient document retrieval without relying on external indexes. However, DSIs need full re-training to handle updates in dynamic corpora, causing significant computational inefficiencies. We introduce PromptDSI, a rehearsal-free, prompt-based approach for instance-wise incremental learning in document retrieval. PromptDSI attaches prompts to the frozen PLM's encoder of DSI, leveraging its powerful representation to efficiently index new corpora while maintaining a balance between stability and plasticity. We eliminate the initial forward pass of prompt-based continual learning methods that doubles training and inference time. Moreover, we propose a topic-aware prompt pool that employs neural topic embeddings as fixed keys. This strategy ensures diverse and effective prompt usage, addressing the challenge of parameter underutilization caused by the collapse of the query-key matching mechanism. Our empirical evaluations demonstrate that PromptDSI matches IncDSI in managing forgetting while significantly enhancing recall by over 4% on new corpora.
VersiCode: Towards Version-controllable Code Generation
Wu, Tongtong, Wu, Weigang, Wang, Xingyu, Xu, Kang, Ma, Suyu, Jiang, Bo, Yang, Ping, Xing, Zhenchang, Li, Yuan-Fang, Haffari, Gholamreza
Significant research has focused on improving the performance of large language model on code-related tasks due to their practical importance. Although performance is typically evaluated using public benchmark datasets, the existing datasets do not account for the concept of \emph{version}, which is crucial in professional software development. In this paper, we introduce VersiCode, the first comprehensive dataset designed to assess the ability of large language models to generate verifiable code for specific library versions. VersiCode encompasses 300 libraries across more than 2,000 versions spanning 9 years. We design two dedicated evaluation tasks: version-specific code completion (VSCC) and version-aware code editing (VACE). Comprehensive experiments are conducted to benchmark the performance of LLMs, revealing the challenging nature of these tasks and VersiCode, that even state-of-the-art LLMs struggle to generate version-correct code. This dataset, together with the proposed tasks, sheds light on LLMs' capabilities and limitations in handling version-specific code generation, and opens up an important new area of research for further investigation. The resources can be found at https://github.com/wutong8023/VersiCode.