Li, Yaohui
MoMa: A Modular Deep Learning Framework for Material Property Prediction
Wang, Botian, Ouyang, Yawen, Li, Yaohui, Wang, Yiqun, Cui, Haorui, Zhang, Jianbing, Wang, Xiaonan, Ma, Wei-Ying, Zhou, Hao
Deep learning methods for material property prediction have been widely explored to advance materials discovery. However, the prevailing pre-train then fine-tune paradigm often fails to address the inherent diversity and disparity of material tasks. To overcome these challenges, we introduce MoMa, a Modular framework for Materials that first trains specialized modules across a wide range of tasks and then adaptively composes synergistic modules tailored to each downstream scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with a substantial 14% average improvement over the strongest baseline. Few-shot and continual learning experiments further highlight MoMa's potential for real-world applications. Pioneering a new paradigm of modular material learning, MoMa will be open-sourced to foster broader community collaboration.
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI, null, Guo, Daya, Yang, Dejian, Zhang, Haowei, Song, Junxiao, Zhang, Ruoyu, Xu, Runxin, Zhu, Qihao, Ma, Shirong, Wang, Peiyi, Bi, Xiao, Zhang, Xiaokang, Yu, Xingkai, Wu, Yu, Wu, Z. F., Gou, Zhibin, Shao, Zhihong, Li, Zhuoshu, Gao, Ziyi, Liu, Aixin, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Feng, Bei, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Qu, Hui, Li, Hui, Guo, Jianzhong, Li, Jiashi, Wang, Jiawei, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Cai, J. L., Ni, Jiaqi, Liang, Jian, Chen, Jin, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Zhao, Liang, Wang, Litong, Zhang, Liyue, Xu, Lei, Xia, Leyi, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Meng, Wang, Miaojun, Li, Mingming, Tian, Ning, Huang, Panpan, Zhang, Peng, Wang, Qiancheng, Chen, Qinyu, Du, Qiushi, Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Chen, R. J., Jin, R. L., Chen, Ruyi, Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Ye, Shengfeng, Wang, Shiyu, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Li, S. S., Zhou, Shuang, Wu, Shaoqing, Ye, Shengfeng, Yun, Tao, Pei, Tian, Sun, Tianyu, Wang, T., Zeng, Wangding, Zhao, Wanjia, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Xiao, W. L., An, Wei, Liu, Xiaodong, Wang, Xiaohan, Chen, Xiaokang, Nie, Xiaotao, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, X. Q., Jin, Xiangyue, Shen, Xiaojin, Chen, Xiaosha, Sun, Xiaowen, Wang, Xiaoxiang, Song, Xinnan, Zhou, Xinyi, Wang, Xianzu, Shan, Xinxia, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Yang, Xu, Yanhong, Li, Yao, Zhao, Yao, Sun, Yaofeng, Wang, Yaohui, Yu, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Ou, Yuan, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Xiong, Yunfan, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yaohui, Zheng, Yi, Zhu, Yuchen, Ma, Yunxian, Tang, Ying, Zha, Yukun, Yan, Yuting, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Ma, Zhicheng, Yan, Zhigang, Wu, Zhiyu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Pan, Zizheng, Huang, Zhen, Xu, Zhipeng, Zhang, Zhongyu, Zhang, Zhen
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.
DeepSeek-V3 Technical Report
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Wang, Jiawei, Chen, Jin, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Song, Junxiao, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Wang, Litong, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Wang, Qiancheng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Xu, Runxin, Zhang, Ruoyu, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Wang, T., Yun, Tao, Pei, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, Zhao, Wanjia, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Zhang, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yu, Xingkai, Song, Xinnan, Shan, Xinxia, Zhou, Xinyi, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang, Yang, Xu, Yanhong, Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Yu, Yi, Zheng, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Tang, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Wu, Yu, Ou, Yuan, Zhu, Yuchen, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Zha, Yukun, Xiong, Yunfan, Ma, Yunxian, Yan, Yuting, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Wu, Z. F., Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Gou, Zhibin, Ma, Zhicheng, Yan, Zhigang, Shao, Zhihong, Xu, Zhipeng, Wu, Zhiyu, Zhang, Zhongyu, Li, Zhuoshu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Gao, Ziyi, Pan, Zizheng
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Wang, Bin, Wang, Bingxuan, Liu, Bo, Zhao, Chenggang, Dengr, Chengqi, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Xu, Hanwei, Yang, Hao, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Chen, Jin, Yuan, Jingyang, Qiu, Junjie, Song, Junxiao, Dong, Kai, Gao, Kaige, Guan, Kang, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Pan, Ruizhe, Xu, Runxin, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Zheng, Size, Wang, T., Pei, Tian, Yuan, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Liu, Xin, Xie, Xin, Yu, Xingkai, Song, Xinnan, Zhou, Xinyi, Yang, Xinyu, Lu, Xuan, Su, Xuecheng, Wu, Y., Li, Y. K., Wei, Y. X., Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Zheng, Yi, Zhang, Yichao, Xiong, Yiliang, Zhao, Yilong, He, Ying, Tang, Ying, Piao, Yishi, Dong, Yixin, Tan, Yixuan, Liu, Yiyuan, Wang, Yongji, Guo, Yongqiang, Zhu, Yuchen, Wang, Yuduan, Zou, Yuheng, Zha, Yukun, Ma, Yunxian, Yan, Yuting, You, Yuxiang, Liu, Yuxuan, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Hao, Zhewen, Shao, Zhihong, Wen, Zhiniu, Xu, Zhipeng, Zhang, Zhongyu, Li, Zhuoshu, Wang, Zihan, Gu, Zihui, Li, Zilin, Xie, Ziwei
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
Hierarchical Dynamic Image Harmonization
Chen, Haoxing, Gu, Zhangxuan, Li, Yaohui, Lan, Jun, Meng, Changhua, Wang, Weiqiang, Li, Huaxiong
Image harmonization is a critical task in computer vision, which aims to adjust the foreground to make it compatible with the background. Recent works mainly focus on using global transformations (i.e., normalization and color curve rendering) to achieve visual consistency. However, these models ignore local visual consistency and their huge model sizes limit their harmonization ability on edge devices. In this paper, we propose a hierarchical dynamic network (HDNet) to adapt features from local to global view for better feature transformation in efficient image harmonization. Inspired by the success of various dynamic models, local dynamic (LD) module and mask-aware global dynamic (MGD) module are proposed in this paper. Specifically, LD matches local representations between the foreground and background regions based on semantic similarities, then adaptively adjust every foreground local representation according to the appearance of its $K$-nearest neighbor background regions. In this way, LD can produce more realistic images at a more fine-grained level, and simultaneously enjoy the characteristic of semantic alignment. The MGD effectively applies distinct convolution to the foreground and background, learning the representations of foreground and background regions as well as their correlations to the global harmonization, facilitating local visual consistency for the images much more efficiently. Experimental results demonstrate that the proposed HDNet significantly reduces the total model parameters by more than 80\% compared to previous methods, while still attaining state-of-the-art performance on the popular iHarmony4 dataset. Notably, the HDNet achieves a 4\% improvement in PSNR and a 19\% reduction in MSE compared to the prior state-of-the-art methods.
Multi-scale Adaptive Task Attention Network for Few-Shot Learning
Chen, Haoxing, Li, Huaxiong, Li, Yaohui, Chen, Chunlin
The goal of few-shot learning is to classify unseen categories with few labeled samples. Recently, the low-level information metric-learning based methods have achieved satisfying performance, since local representations (LRs) are more consistent between seen and unseen classes. However, most of these methods deal with each category in the support set independently, which is not sufficient to measure the relation between features, especially in a certain task. Moreover, the low-level information-based metric learning method suffers when dominant objects of different scales exist in a complex background. To address these issues, this paper proposes a novel Multi-scale Adaptive Task Attention Network (MATANet) for few-shot learning. Specifically, we first use a multi-scale feature generator to generate multiple features at different scales. Then, an adaptive task attention module is proposed to select the most important LRs among the entire task. Afterwards, a similarity-to-class module and a fusion layer are utilized to calculate a joint multi-scale similarity between the query image and the support set. Extensive experiments on popular benchmarks clearly show the effectiveness of the proposed MATANet compared with state-of-the-art methods.