Li, Xuejian
Deep Automated Mechanism Design for Integrating Ad Auction and Allocation in Feed
Li, Xuejian, Wang, Ze, Zhu, Bingqi, He, Fei, Wang, Yongkang, Wang, Xingxing
E-commerce platforms usually present an ordered list, mixed with several organic items and an advertisement, in response to each user's page view request. This list, the outcome of ad auction and allocation processes, directly impacts the platform's ad revenue and gross merchandise volume (GMV). Specifically, the ad auction determines which ad is displayed and the corresponding payment, while the ad allocation decides the display positions of the advertisement and organic items. The prevalent methods of segregating the ad auction and allocation into two distinct stages face two problems: 1) Ad auction does not consider externalities, such as the influence of actual display position and context on ad Click-Through Rate (CTR); 2) The ad allocation, which utilizes the auction-winning ad's payment to determine the display position dynamically, fails to maintain incentive compatibility (IC) for the advertisement. For instance, in the auction stage employing the traditional Generalized Second Price (GSP) , even if the winning ad increases its bid, its payment remains unchanged. This implies that the advertisement cannot secure a better position and thus loses the opportunity to achieve higher utility in the subsequent ad allocation stage. Previous research often focused on one of the two stages, neglecting the two-stage problem, which may result in suboptimal outcomes...
NMA: Neural Multi-slot Auctions with Externalities for Online Advertising
Liao, Guogang, Li, Xuejian, Wang, Ze, Yang, Fan, Guan, Muzhi, Zhu, Bingqi, Wang, Yongkang, Wang, Xingxing, Wang, Dong
Online advertising driven by auctions brings billions of dollars in revenue for social networking services and e-commerce platforms. GSP auctions, which are simple and easy to understand for advertisers, have almost become the benchmark for ad auction mechanisms in the industry. However, most GSP-based industrial practices assume that the user click only relies on the ad itself, which overlook the effect of external items, referred to as externalities. Recently, DNA has attempted to upgrade GSP with deep neural networks and models local externalities to some extent. However, it only considers set-level contexts from auctions and ignores the order and displayed position of ads, which is still suboptimal. Although VCG-based multi-slot auctions (e.g., VCG, WVCG) make it theoretically possible to model global externalities (e.g., the order and positions of ads and so on), they lack an efficient balance of both revenue and social welfare. In this paper, we propose novel auction mechanisms named Neural Multi-slot Auctions (NMA) to tackle the above-mentioned challenges. Specifically, we model the global externalities effectively with a context-aware list-wise prediction module to achieve better performance. We design a list-wise deep rank module to guarantee incentive compatibility in end-to-end learning. Furthermore, we propose an auxiliary loss for social welfare to effectively reduce the decline of social welfare while maximizing revenue. Experiment results on both offline large-scale datasets and online A/B tests demonstrate that NMA obtains higher revenue with balanced social welfare than other existing auction mechanisms (i.e., GSP, DNA, WVCG) in industrial practice, and we have successfully deployed NMA on Meituan food delivery platform.