Goto

Collaborating Authors

 Li, Xiujun


Multimodal Autoregressive Pre-training of Large Vision Encoders

arXiv.org Artificial Intelligence

We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.


Ferret-UI 2: Mastering Universal User Interface Understanding Across Platforms

arXiv.org Artificial Intelligence

Building a generalist model for user interface (UI) understanding is challenging due to various foundational issues, such as platform diversity, resolution variation, and data limitation. In this paper, we introduce Ferret-UI 2, a multimodal large language model (MLLM) designed for universal UI understanding across a wide range of platforms, including iPhone, Android, iPad, Webpage, and AppleTV. Building on the foundation of Ferret-UI, Ferret-UI 2 introduces three key innovations: support for multiple platform types, high-resolution perception through adaptive scaling, and advanced task training data generation powered by GPT-4o with set-of-mark visual prompting. These advancements enable Ferret-UI 2 to perform complex, user-centered interactions, making it highly versatile and adaptable for the expanding diversity of platform ecosystems. Extensive empirical experiments on referring, grounding, user-centric advanced tasks (comprising 9 subtasks $\times$ 5 platforms), GUIDE next-action prediction dataset, and GUI-World multi-platform benchmark demonstrate that Ferret-UI 2 significantly outperforms Ferret-UI, and also shows strong cross-platform transfer capabilities.


From Text to Pixel: Advancing Long-Context Understanding in MLLMs

arXiv.org Artificial Intelligence

The rapid progress in Multimodal Large Language Models (MLLMs) has significantly advanced their ability to process and understand complex visual and textual information. However, the integration of multiple images and extensive textual contexts remains a challenge due to the inherent limitation of the models' capacity to handle long input sequences efficiently. In this paper, we introduce SEEKER, a multimodal large language model designed to tackle this issue. SEEKER aims to optimize the compact encoding of long text by compressing the text sequence into the visual pixel space via images, enabling the model to handle long text within a fixed token-length budget efficiently. Our empirical experiments on six long-context multimodal tasks demonstrate that SEEKER can leverage fewer image tokens to convey the same amount of textual information compared with the OCR-based approach, and is more efficient in understanding long-form multimodal input and generating long-form textual output, outperforming all existing proprietary and open-source MLLMs by large margins.


VIM: Probing Multimodal Large Language Models for Visual Embedded Instruction Following

arXiv.org Artificial Intelligence

We introduce VISUAL EMBEDDED INSTRUCTION (VIM), a new framework designed to evaluate the visual instruction following capability of Multimodal Large Language Models (MLLMs). As illustrated in Figure 2, VIM challenges the MLLMs by embedding the instructions into the visual scenes, demanding strong visual interpretative skills for instruction following. We adapt VIM to various benchmarks, including VQAv2, MME, MM-Vet, and RefCOCO series, compose a VIM bench, and probe diverse MLLMs across three distinct in-context learning settings: Zero Shot, One Shot, and Pair Shot. We observe that there is a significant performance disparity between the open-source MLLMs and GPT-4V, implying that their proficiency in visual instruction comprehension is not up to par. Our results highlight a promising direction for the enhancement of MLLMs capabilities on instruction following. We aim VIM to serve as a useful norm for advancing the state of the art and driving further progress in the field.


LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation

arXiv.org Artificial Intelligence

Existing automatic evaluation on text-to-image synthesis can only provide an image-text matching score, without considering the object-level compositionality, which results in poor correlation with human judgments. In this work, we propose LLMScore, a new framework that offers evaluation scores with multi-granularity compositionality. LLMScore leverages the large language models (LLMs) to evaluate text-to-image models. Initially, it transforms the image into image-level and object-level visual descriptions. Then an evaluation instruction is fed into the LLMs to measure the alignment between the synthesized image and the text, ultimately generating a score accompanied by a rationale. Our substantial analysis reveals the highest correlation of LLMScore with human judgments on a wide range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO, DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall's tau correlation with human evaluations that is 58.8% and 31.2% higher than the commonly-used text-image matching metrics CLIP and BLIP, respectively.


Self-supervised Pre-training with Hard Examples Improves Visual Representations

arXiv.org Artificial Intelligence

Self-supervised pre-training (SSP) employs random image transformations to generate training data for visual representation learning. In this paper, we first present a modeling framework that unifies existing SSP methods as learning to predict pseudo-labels. Then, we propose new data augmentation methods of generating training examples whose pseudo-labels are harder to predict than those generated via random image transformations. Specifically, we use adversarial training and CutMix to create hard examples (HEXA) to be used as augmented views for MoCo-v2 and DeepCluster-v2, leading to two variants HEXA_{MoCo} and HEXA_{DCluster}, respectively. In our experiments, we pre-train models on ImageNet and evaluate them on multiple public benchmarks. Our evaluation shows that the two new algorithm variants outperform their original counterparts, and achieve new state-of-the-art on a wide range of tasks where limited task supervision is available for fine-tuning. These results verify that hard examples are instrumental in improving the generalization of the pre-trained models.


VinVL: Making Visual Representations Matter in Vision-Language Models

arXiv.org Artificial Intelligence

This paper presents a detailed study of improving visual representations for vision language (VL) tasks and develops an improved object detection model to provide object-centric representations of images. Compared to the most widely used \emph{bottom-up and top-down} model \cite{anderson2018bottom}, the new model is bigger, better-designed for VL tasks, and pre-trained on much larger training corpora that combine multiple public annotated object detection datasets. Therefore, it can generate representations of a richer collection of visual objects and concepts. While previous VL research focuses mainly on improving the vision-language fusion model and leaves the object detection model improvement untouched, we show that visual features matter significantly in VL models. In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model \oscar \cite{li2020oscar}, and utilize an improved approach \short\ to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks. Our results show that the new visual features significantly improve the performance across all VL tasks, creating new state-of-the-art results on seven public benchmarks. We will release the new object detection model to public.


Budgeted Policy Learning for Task-Oriented Dialogue Systems

arXiv.org Artificial Intelligence

This paper presents a new approach that extends Deep Dyna-Q (DDQ) by incorporating a Budget-Conscious Scheduling (BCS) to best utilize a fixed, small amount of user interactions (budget) for learning task-oriented dialogue agents. BCS consists of (1) a Poisson-based global scheduler to allocate budget over different stages of training; (2) a controller to decide at each training step whether the agent is trained using real or simulated experiences; (3) a user goal sampling module to generate the experiences that are most effective for policy learning. Experiments on a movie-ticket booking task with simulated and real users show that our approach leads to significant improvements in success rate over the state-of-the-art baselines given the fixed budget.


ConvLab: Multi-Domain End-to-End Dialog System Platform

arXiv.org Artificial Intelligence

We present ConvLab, an open-source multi-domain end-to-end dialog system platform, that enables researchers to quickly set up experiments with reusable components and compare a large set of different approaches, ranging from conventional pipeline systems to end-to-end neural models, in common environments. ConvLab offers a set of fully annotated datasets and associated pre-trained reference models. As a showcase, we extend the MultiWOZ dataset with user dialog act annotations to train all component models and demonstrate how ConvLab makes it easy and effortless to conduct complicated experiments in multi-domain end-to-end dialog settings.


Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization

Neural Information Processing Systems

Responses generated by neural conversational models tend to lack informativeness and diversity. We present a novel adversarial learning method, called Adversarial Information Maximization (AIM) model, to address these two related but distinct problems. To foster response diversity, we leverage adversarial training that allows distributional matching of synthetic and real responses. To improve informativeness, we explicitly optimize a variational lower bound on pairwise mutual information between query and response. Empirical results from automatic and human evaluations demonstrate that our methods significantly boost informativeness and diversity.