Goto

Collaborating Authors

 Li, Xiong


Whole-Body Impedance Coordinative Control of Wheel-Legged Robot on Uncertain Terrain

arXiv.org Artificial Intelligence

This article propose a whole-body impedance coordinative control framework for a wheel-legged humanoid robot to achieve adaptability on complex terrains while maintaining robot upper body stability. The framework contains a bi-level control strategy. The outer level is a variable damping impedance controller, which optimizes the damping parameters to ensure the stability of the upper body while holding an object. The inner level employs Whole-Body Control (WBC) optimization that integrates real-time terrain estimation based on wheel-foot position and force data. It generates motor torques while accounting for dynamic constraints, joint limits,friction cones, real-time terrain updates, and a model-free friction compensation strategy. The proposed whole-body coordinative control method has been tested on a recently developed quadruped humanoid robot. The results demonstrate that the proposed algorithm effectively controls the robot, maintaining upper body stability to successfully complete a water-carrying task while adapting to varying terrains.


Lifelike Agility and Play in Quadrupedal Robots using Reinforcement Learning and Generative Pre-trained Models

arXiv.org Artificial Intelligence

Knowledge from animals and humans inspires robotic innovations. Numerous efforts have been made to achieve agile locomotion in quadrupedal robots through classical controllers or reinforcement learning approaches. These methods usually rely on physical models or handcrafted rewards to accurately describe the specific system, rather than on a generalized understanding like animals do. Here we propose a hierarchical framework to construct primitive-, environmental- and strategic-level knowledge that are all pre-trainable, reusable and enrichable for legged robots. The primitive module summarizes knowledge from animal motion data, where, inspired by large pre-trained models in language and image understanding, we introduce deep generative models to produce motor control signals stimulating legged robots to act like real animals. Then, we shape various traversing capabilities at a higher level to align with the environment by reusing the primitive module. Finally, a strategic module is trained focusing on complex downstream tasks by reusing the knowledge from previous levels. We apply the trained hierarchical controllers to the MAX robot, a quadrupedal robot developed in-house, to mimic animals, traverse complex obstacles and play in a designed challenging multi-agent chase tag game, where lifelike agility and strategy emerge in the robots.


Curvilinear object segmentation in medical images based on ODoS filter and deep learning network

arXiv.org Artificial Intelligence

Automatic segmentation of curvilinear objects in medical images plays an important role in the diagnosis and evaluation of human diseases, yet it is a challenging uncertainty in the complex segmentation tasks due to different issues such as various image appearances, low contrast between curvilinear objects and their surrounding backgrounds, thin and uneven curvilinear structures, and improper background illumination conditions. To overcome these challenges, we present a unique curvilinear structure segmentation framework based on an oriented derivative of stick (ODoS) filter and a deep learning network for curvilinear object segmentation in medical images. Currently, a large number of deep learning models emphasize developing deep architectures and ignore capturing the structural features of curvilinear objects, which may lead to unsatisfactory results. Consequently, a new approach that incorporates an ODoS filter as part of a deep learning network is presented to improve the spatial attention of curvilinear objects. Specifically, the input image is transfered into four-channel image constructed by the ODoS filter. In which, the original image is considered the principal part to describe various image appearance and complex background illumination conditions, a multi-step strategy is used to enhance the contrast between curvilinear objects and their surrounding backgrounds, and a vector field is applied to discriminate thin and uneven curvilinear structures. Subsequently, a deep learning framework is employed to extract various structural features for curvilinear object segmentation in medical images. The performance of the computational model is validated in experiments conducted on the publicly available DRIVE, STARE and CHASEDB1 datasets. The experimental results indicate that the presented model yields surprising results compared with those of some state-of-the-art methods.


Discriminative Clustering via Generative Feature Mapping

AAAI Conferences

Existing clustering methods can be roughly classified into two categories: generative and discriminative approaches. Generative clustering aims to explain the data and thus is adaptive to the underlying data distribution; discriminative clustering, on the other hand, emphasizes on finding partition boundaries. In this paper, we take the advantages of both models by coupling the two paradigms through feature mapping derived from linearizing Bayesian classifiers. Such the feature mapping strategy maps nonlinear boundaries of generative clustering to linear ones in the feature space where we explicitly impose the maximum entropy principle. We also propose the unified probabilistic framework, enabling solvers using standard techniques. Experiments on a variety of datasets bear out the notable benefit of our method in terms of adaptiveness and robustness.