Li, Xiaotong
Tempo: Helping Data Scientists and Domain Experts Collaboratively Specify Predictive Modeling Tasks
Sivaraman, Venkatesh, Vaishampayan, Anika, Li, Xiaotong, Buck, Brian R, Ma, Ziyong, Boyce, Richard D, Perer, Adam
Temporal predictive models have the potential to improve decisions in health care, public services, and other domains, yet they often fail to effectively support decision-makers. Prior literature shows that many misalignments between model behavior and decision-makers' expectations stem from issues of model specification, namely how, when, and for whom predictions are made. However, model specifications for predictive tasks are highly technical and difficult for non-data-scientist stakeholders to interpret and critique. To address this challenge we developed Tempo, an interactive system that helps data scientists and domain experts collaboratively iterate on model specifications. Using Tempo's simple yet precise temporal query language, data scientists can quickly prototype specifications with greater transparency about pre-processing choices. Moreover, domain experts can assess performance within data subgroups to validate that models behave as expected. Through three case studies, we demonstrate how Tempo helps multidisciplinary teams quickly prune infeasible specifications and identify more promising directions to explore.
EVEv2: Improved Baselines for Encoder-Free Vision-Language Models
Diao, Haiwen, Li, Xiaotong, Cui, Yufeng, Wang, Yueze, Deng, Haoge, Pan, Ting, Wang, Wenxuan, Lu, Huchuan, Wang, Xinlong
Existing encoder-free vision-language models (VLMs) are rapidly narrowing the performance gap with their encoder-based counterparts, highlighting the promising potential for unified multimodal systems with structural simplicity and efficient deployment. We systematically clarify the performance gap between VLMs using pre-trained vision encoders, discrete tokenizers, and minimalist visual layers from scratch, deeply excavating the under-examined characteristics of encoder-free VLMs. We develop efficient strategies for encoder-free VLMs that rival mainstream encoder-based ones. After an in-depth investigation, we launch EVEv2.0, a new and improved family of encoder-free VLMs. We show that: (i) Properly decomposing and hierarchically associating vision and language within a unified model reduces interference between modalities. (ii) A well-designed training strategy enables effective optimization for encoder-free VLMs. Through extensive evaluation, our EVEv2.0 represents a thorough study for developing a decoder-only architecture across modalities, demonstrating superior data efficiency and strong vision-reasoning capability. Code is publicly available at: https://github.com/baaivision/EVE.
Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data
Gu, Shuhao, Zhang, Jialing, Zhou, Siyuan, Yu, Kevin, Xing, Zhaohu, Wang, Liangdong, Cao, Zhou, Jia, Jintao, Zhang, Zhuoyi, Wang, Yixuan, Hu, Zhenchong, Zhang, Bo-Wen, Li, Jijie, Liang, Dong, Zhao, Yingli, Wang, Songjing, Ao, Yulong, Ju, Yiming, Ma, Huanhuan, Li, Xiaotong, Diao, Haiwen, Cui, Yufeng, Wang, Xinlong, Liu, Yaoqi, Feng, Fangxiang, Liu, Guang
Recently, Vision-Language Models (VLMs) have achieved remarkable progress in multimodal tasks, and multimodal instruction data serves as the foundation for enhancing VLM capabilities. Despite the availability of several open-source multimodal datasets, limitations in the scale and quality of open-source instruction data hinder the performance of VLMs trained on these datasets, leading to a significant gap compared to models trained on closed-source data. To address this challenge, we introduce Infinity-MM, a large-scale multimodal instruction dataset. We collected the available multimodal instruction datasets and performed unified preprocessing, resulting in a dataset with over 40 million samples that ensures diversity and accuracy. Furthermore, to enable large-scale expansion of instruction data and support the continuous acquisition of high-quality data, we propose a synthetic instruction generation method based on a tagging system and open-source VLMs. By establishing correspondences between different types of images and associated instruction types, this method can provide essential guidance during data synthesis. Leveraging this high-quality data, we have trained a 2-billion-parameter Vision-Language Model, Aquila-VL-2B, which achieves state-of-the-art (SOTA) performance among models of similar scale. The data is available at: https://huggingface.co/datasets/BAAI/Infinity-MM.
InstructBioMol: Advancing Biomolecule Understanding and Design Following Human Instructions
Zhuang, Xiang, Ding, Keyan, Lyu, Tianwen, Jiang, Yinuo, Li, Xiaotong, Xiang, Zhuoyi, Wang, Zeyuan, Qin, Ming, Feng, Kehua, Wang, Jike, Zhang, Qiang, Chen, Huajun
Understanding and designing biomolecules, such as proteins and small molecules, is central to advancing drug discovery, synthetic biology, and enzyme engineering. Recent breakthroughs in Artificial Intelligence (AI) have revolutionized biomolecular research, achieving remarkable accuracy in biomolecular prediction and design. However, a critical gap remains between AI's computational power and researchers' intuition, using natural language to align molecular complexity with human intentions. Large Language Models (LLMs) have shown potential to interpret human intentions, yet their application to biomolecular research remains nascent due to challenges including specialized knowledge requirements, multimodal data integration, and semantic alignment between natural language and biomolecules. To address these limitations, we present InstructBioMol, a novel LLM designed to bridge natural language and biomolecules through a comprehensive any-to-any alignment of natural language, molecules, and proteins. This model can integrate multimodal biomolecules as input, and enable researchers to articulate design goals in natural language, providing biomolecular outputs that meet precise biological needs. Experimental results demonstrate InstructBioMol can understand and design biomolecules following human instructions. Notably, it can generate drug molecules with a 10% improvement in binding affinity and design enzymes that achieve an ESP Score of 70.4, making it the only method to surpass the enzyme-substrate interaction threshold of 60.0 recommended by the ESP developer. This highlights its potential to transform real-world biomolecular research.
DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception
Li, Xiaotong, Zhang, Fan, Diao, Haiwen, Wang, Yueze, Wang, Xinlong, Duan, Ling-Yu
Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, and spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The dataset and code are publicly available at https://github.com/baaivision/DenseFusion.
Scientific Large Language Models: A Survey on Biological & Chemical Domains
Zhang, Qiang, Ding, Keyang, Lyv, Tianwen, Wang, Xinda, Yin, Qingyu, Zhang, Yiwen, Yu, Jing, Wang, Yuhao, Li, Xiaotong, Xiang, Zhuoyi, Zhuang, Xiang, Wang, Zeyuan, Qin, Ming, Zhang, Mengyao, Zhang, Jinlu, Cui, Jiyu, Xu, Renjun, Chen, Hongyang, Fan, Xiaohui, Xing, Huabin, Chen, Huajun
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension, representing a significant stride toward artificial general intelligence. The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines. This growing interest has led to the advent of scientific LLMs, a novel subclass specifically engineered for facilitating scientific discovery. As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration. However, a systematic and up-to-date survey introducing them is currently lacking. In this paper, we endeavor to methodically delineate the concept of "scientific language", whilst providing a thorough review of the latest advancements in scientific LLMs. Given the expansive realm of scientific disciplines, our analysis adopts a focused lens, concentrating on the biological and chemical domains. This includes an in-depth examination of LLMs for textual knowledge, small molecules, macromolecular proteins, genomic sequences, and their combinations, analyzing them in terms of model architectures, capabilities, datasets, and evaluation. Finally, we critically examine the prevailing challenges and point out promising research directions along with the advances of LLMs. By offering a comprehensive overview of technical developments in this field, this survey aspires to be an invaluable resource for researchers navigating the intricate landscape of scientific LLMs.
InstructProtein: Aligning Human and Protein Language via Knowledge Instruction
Wang, Zeyuan, Zhang, Qiang, Ding, Keyan, Qin, Ming, Zhuang, Xiang, Li, Xiaotong, Chen, Huajun
Large Language Models (LLMs) have revolutionized the field of natural language processing, but they fall short in comprehending biological sequences such as proteins. To address this challenge, we propose InstructProtein, an innovative LLM that possesses bidirectional generation capabilities in both human and protein languages: (i) taking a protein sequence as input to predict its textual function description and (ii) using natural language to prompt protein sequence generation. To achieve this, we first pre-train an LLM on both protein and natural language corpora, enabling it to comprehend individual languages. Then supervised instruction tuning is employed to facilitate the alignment of these two distinct languages. Herein, we introduce a knowledge graph-based instruction generation framework to construct a high-quality instruction dataset, addressing annotation imbalance and instruction deficits in existing protein-text corpus. In particular, the instructions inherit the structural relations between proteins and function annotations in knowledge graphs, which empowers our model to engage in the causal modeling of protein functions, akin to the chain-of-thought processes in natural languages. Extensive experiments on bidirectional protein-text generation tasks show that InstructProtein outperforms state-of-the-art LLMs by large margins. Moreover, InstructProtein serves as a pioneering step towards text-based protein function prediction and sequence design, effectively bridging the gap between protein and human language understanding.
Modeling Uncertain Feature Representation for Domain Generalization
Li, Xiaotong, Hu, Zixuan, Liu, Jun, Ge, Yixiao, Dai, Yongxing, Duan, Ling-Yu
Though deep neural networks have achieved impressive success on various vision tasks, obvious performance degradation still exists when models are tested in out-of-distribution scenarios. In addressing this limitation, we ponder that the feature statistics (mean and standard deviation), which carry the domain characteristics of the training data, can be properly manipulated to improve the generalization ability of deep learning models. Existing methods commonly consider feature statistics as deterministic values measured from the learned features and do not explicitly model the uncertain statistics discrepancy caused by potential domain shifts during testing. In this paper, we improve the network generalization ability by modeling domain shifts with uncertainty (DSU), i.e., characterizing the feature statistics as uncertain distributions during training. Specifically, we hypothesize that the feature statistic, after considering the potential uncertainties, follows a multivariate Gaussian distribution. During inference, we propose an instance-wise adaptation strategy that can adaptively deal with the unforeseeable shift and further enhance the generalization ability of the trained model with negligible additional cost. We also conduct theoretical analysis on the aspects of generalization error bound and the implicit regularization effect, showing the efficacy of our method. Extensive experiments demonstrate that our method consistently improves the network generalization ability on multiple vision tasks, including image classification, semantic segmentation, instance retrieval, and pose estimation. Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints. Code will be released in https://github.com/lixiaotong97/DSU.