Goto

Collaborating Authors

 Li, Xiaohong


Explore-Construct-Filter: An Automated Framework for Rich and Reliable API Knowledge Graph Construction

arXiv.org Artificial Intelligence

The API Knowledge Graph (API KG) is a structured network that models API entities and their relations, providing essential semantic insights for tasks such as API recommendation, code generation, and API misuse detection. However, constructing a knowledge-rich and reliable API KG presents several challenges. Existing schema-based methods rely heavily on manual annotations to design KG schemas, leading to excessive manual overhead. On the other hand, schema-free methods, due to the lack of schema guidance, are prone to introducing noise, reducing the KG's reliability. To address these issues, we propose the Explore-Construct-Filter framework, an automated approach for API KG construction based on large language models (LLMs). This framework consists of three key modules: 1) KG exploration: LLMs simulate the workflow of annotators to automatically design a schema with comprehensive type triples, minimizing human intervention; 2) KG construction: Guided by the schema, LLMs extract instance triples to construct a rich yet unreliable API KG; 3) KG filtering: Removing invalid type triples and suspicious instance triples to construct a rich and reliable API KG. Experimental results demonstrate that our method surpasses the state-of-the-art method, achieving a 25.2% improvement in F1 score. Moreover, the Explore-Construct-Filter framework proves effective, with the KG exploration module increasing KG richness by 133.6% and the KG filtering module improving reliability by 26.6%. Finally, cross-model experiments confirm the generalizability of our framework.


SCC-rFMQ Learning in Cooperative Markov Games with Continuous Actions

arXiv.org Artificial Intelligence

Although many reinforcement learning methods have been proposed for learning the optimal solutions in single-agent continuousaction domains, multiagent coordination domains with continuous actions have received relatively few investigations. In this paper, we propose an independent learner hierarchical method, named Sample Continuous Coordination with recursive Frequency Maximum Q-Value (SCC-rFMQ), which divides the cooperative problem with continuous actions into two layers. The first layer samples a finite set of actions from the continuous action spaces by a re-sampling mechanism with variable exploratory rates, and the second layer evaluates the actions in the sampled action set and updates the policy using a reinforcement learning cooperative method. By constructing cooperative mechanisms at both levels, SCC-rFMQ can handle cooperative problems in continuous action cooperative Markov games effectively. The effectiveness of SCC-rFMQ is experimentally demonstrated on two well-designed games, i.e., a continuous version of the climbing game and a cooperative version of the boat problem. Experimental results show that SCC-rFMQ outperforms other reinforcement learning algorithms. A large number of multiagent coordination domains involve continuous action spaces, such as robot soccer [1] and multiplayer online battle arena game [2]. In such environments, agents not only need to coordinate with other agents towards desirable outcomes efficiently but also have to deal with infinitely large action spaces.


Optimal Personalized Defense Strategy Against Man-In-The-Middle Attack

AAAI Conferences

The Man-In-The-Middle (MITM) attack is one of the most common attacks employed in the network hacking. MITM attackers can successfully invoke attacks such as denial of service (DoS) and port stealing, and lead to surprisingly harmful consequences for users in terms of both financial loss and security issues. The conventional defense approaches mainly consider how to detect and eliminate those attacks or how to prevent those attacks from being launched in the first place. This paper proposes a game-theoretic defense strategy from a different perspective, which aims at minimizing the loss that the whole system sustains given that the MITM attacks are inevitable. We model the interaction between the attacker and the defender as a Stackelberg security game and adopt the Strong Stackelberg Equilibrium (SSE) as the defender's strategy. Since the defender's strategy space is infinite in our model, we employ a novel method to reduce the searching space of computing the optimal defense strategy. Finally, we empirically evaluate our optimal defense strategy by comparing it with non-strategic defense strategies. The results indicate that our game-theoretic defense strategy significantly outperforms other non-strategic defense strategies in terms of decreasing the total losses against MITM attacks.


TRM: Computing Reputation Score by Mining Reviews

AAAI Conferences

As the rapid development of e-commerce, reputation model has been proposed to help customers make effective purchase decisions. However, most of reputation models focus only on the overall ratings of products without considering reviews which provided by customers. We believe that textual reviews provided by buyers can express their real opinions more honestly. As so, in this paper, based on word2vector model, we propose a Textual Reputation Model (TRM) to obtain useful information from reviews, and evaluate the trustworthiness of objective product. Experimental results on real data demonstrate the effectiveness of our approach in capturing reputation information from reviews.