Li, Xiaofan
AttFC: Attention Fully-Connected Layer for Large-Scale Face Recognition with One GPU
Zheng, Zhuowen, Si, Yain-Whar, Yuan, Xiaochen, Duan, Junwei, Wang, Ke, Li, Xiaofan, Zhang, Xinyuan, Gong, Xueyuan
Nowadays, with the advancement of deep neural networks (DNNs) and the availability of large-scale datasets, the face recognition (FR) model has achieved exceptional performance. However, since the parameter magnitude of the fully connected (FC) layer directly depends on the number of identities in the dataset. If training the FR model on large-scale datasets, the size of the model parameter will be excessively huge, leading to substantial demand for computational resources, such as time and memory. This paper proposes the attention fully connected (AttFC) layer, which could significantly reduce computational resources. AttFC employs an attention loader to generate the generative class center (GCC), and dynamically store the class center with Dynamic Class Container (DCC). DCC only stores a small subset of all class centers in FC, thus its parameter count is substantially less than the FC layer. Also, training face recognition models on large-scale datasets with one GPU often encounter out-of-memory (OOM) issues. AttFC overcomes this and achieves comparable performance to state-of-the-art methods.
MSConv: Multiplicative and Subtractive Convolution for Face Recognition
Zhou, Si, Si, Yain-Whar, Yuan, Xiaochen, Li, Xiaofan, Liu, Xiaoxiang, Zhang, Xinyuan, Lin, Cong, Gong, Xueyuan
In Neural Networks, there are various methods of feature fusion. Different strategies can significantly affect the effectiveness of feature representation, consequently influencing the ability of model to extract representative and discriminative features. In the field of face recognition, traditional feature fusion methods include feature concatenation and feature addition. Recently, various attention mechanism-based fusion strategies have emerged. However, we found that these methods primarily focus on the important features in the image, referred to as salient features in this paper, while neglecting another equally important set of features for image recognition tasks, which we term differential features. This may cause the model to overlook critical local differences when dealing with complex facial samples. Therefore, in this paper, we propose an efficient convolution module called MSConv (Multiplicative and Subtractive Convolution), designed to balance the learning of model about salient and differential features. Specifically, we employ multi-scale mixed convolution to capture both local and broader contextual information from face images, and then utilize Multiplication Operation (MO) and Subtraction Operation (SO) to extract salient and differential features, respectively. Experimental results demonstrate that by integrating both salient and differential features, MSConv outperforms models that only focus on salient features.
AdaSin: Enhancing Hard Sample Metrics with Dual Adaptive Penalty for Face Recognition
Guo, Qiqi, Zheng, Zhuowen, Yang, Guanghua, Liu, Zhiquan, Li, Xiaofan, Li, Jianqing, Tian, Jinyu, Gong, Xueyuan
In recent years, the emergence of deep convolutional neural networks has positioned face recognition as a prominent research focus in computer vision. Traditional loss functions, such as margin-based, hard-sample mining-based, and hybrid approaches, have achieved notable performance improvements, with some leveraging curriculum learning to optimize training. However, these methods often fall short in effectively quantifying the difficulty of hard samples. To address this, we propose Adaptive Sine (AdaSin) loss function, which introduces the sine of the angle between a sample's embedding feature and its ground-truth class center as a novel difficulty metric. This metric enables precise and effective penalization of hard samples. By incorporating curriculum learning, the model dynamically adjusts classification boundaries across different training stages. Unlike previous adaptive-margin loss functions, AdaSin introduce a dual adaptive penalty, applied to both the positive and negative cosine similarities of hard samples. This design imposes stronger constraints, enhancing intra-class compactness and inter-class separability. The combination of the dual adaptive penalty and curriculum learning is guided by a well-designed difficulty metric. It enables the model to focus more effectively on hard samples in later training stages, and lead to the extraction of highly discriminative face features. Extensive experiments across eight benchmarks demonstrate that AdaSin achieves superior accuracy compared to other state-of-the-art methods.
Learning Multiple Probabilistic Decisions from Latent World Model in Autonomous Driving
Xiao, Lingyu, Liu, Jiang-Jiang, Yang, Sen, Li, Xiaofan, Ye, Xiaoqing, Yang, Wankou, Wang, Jingdong
The autoregressive world model exhibits robust generalization capabilities in vectorized scene understanding but encounters difficulties in deriving actions due to insufficient uncertainty modeling and self-delusion. In this paper, we explore the feasibility of deriving decisions from an autoregressive world model by addressing these challenges through the formulation of multiple probabilistic hypotheses. We propose LatentDriver, a framework models the environment's next states and the ego vehicle's possible actions as a mixture distribution, from which a deterministic control signal is then derived. By incorporating mixture modeling, the stochastic nature of decisionmaking is captured. Additionally, the self-delusion problem is mitigated by providing intermediate actions sampled from a distribution to the world model. Experimental results on the recently released close-loop benchmark Waymax demonstrate that LatentDriver surpasses state-of-the-art reinforcement learning and imitation learning methods, achieving expert-level performance. The code and models will be made available at https://github.com/Sephirex-X/LatentDriver.
USL-Net: Uncertainty Self-Learning Network for Unsupervised Skin Lesion Segmentation
Li, Xiaofan, Peng, Bo, Hu, Jie, Ma, Changyou, Yang, Daipeng, Xie, Zhuyang
Unsupervised skin lesion segmentation offers several benefits, including conserving expert human resources, reducing discrepancies due to subjective human labeling, and adapting to novel environments. However, segmenting dermoscopic images without manual labeling guidance presents significant challenges due to dermoscopic image artifacts such as hair noise, blister noise, and subtle edge differences. To address these challenges, we introduce an innovative Uncertainty Self-Learning Network (USL-Net) designed for skin lesion segmentation. The USL-Net can effectively segment a range of lesions, eliminating the need for manual labeling guidance. Initially, features are extracted using contrastive learning, followed by the generation of Class Activation Maps (CAMs) as saliency maps using these features. The different CAM locations correspond to the importance of the lesion region based on their saliency. High-saliency regions in the map serve as pseudo-labels for lesion regions while low-saliency regions represent the background. However, intermediate regions can be hard to classify, often due to their proximity to lesion edges or interference from hair or blisters. Rather than risk potential pseudo-labeling errors or learning confusion by forcefully classifying these regions, we consider them as uncertainty regions, exempting them from pseudo-labeling and allowing the network to self-learn. Further, we employ connectivity detection and centrality detection to refine foreground pseudo-labels and reduce noise-induced errors. The application of cycle refining enhances performance further. Our method underwent thorough experimental validation on the ISIC-2017, ISIC-2018, and PH2 datasets, demonstrating that its performance is on par with weakly supervised and supervised methods, and exceeds that of other existing unsupervised methods.
DrivingDiffusion: Layout-Guided multi-view driving scene video generation with latent diffusion model
Li, Xiaofan, Zhang, Yifu, Ye, Xiaoqing
With the increasing popularity of autonomous driving based on the powerful and unified bird's-eye-view (BEV) representation, a demand for high-quality and large-scale multi-view video data with accurate annotation is urgently required. However, such large-scale multi-view data is hard to obtain due to expensive collection and annotation costs. To alleviate the problem, we propose a spatial-temporal consistent diffusion framework DrivingDiffusion, to generate realistic multi-view videos controlled by 3D layout. There are three challenges when synthesizing multi-view videos given a 3D layout: How to keep 1) cross-view consistency and 2) cross-frame consistency? 3) How to guarantee the quality of the generated instances? Our DrivingDiffusion solves the problem by cascading the multi-view single-frame image generation step, the single-view video generation step shared by multiple cameras, and post-processing that can handle long video generation. In the multi-view model, the consistency of multi-view images is ensured by information exchange between adjacent cameras. In the temporal model, we mainly query the information that needs attention in subsequent frame generation from the multi-view images of the first frame. We also introduce the local prompt to effectively improve the quality of generated instances. In post-processing, we further enhance the cross-view consistency of subsequent frames and extend the video length by employing temporal sliding window algorithm. Without any extra cost, our model can generate large-scale realistic multi-camera driving videos in complex urban scenes, fueling the downstream driving tasks. The code will be made publicly available.